Artificial lung device

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Hollow or tubular part or organ

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S200240

Reexamination Certificate

active

06723132

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to lung aids. More specifically, the invention is an artificial lung for humans and other mammals, and either inserted within the body (with internal energizing system) or placed externally and energized by battery or batteries, or an A.C. source.
2. Description of the Related Art
The related art describes various artificial lung apparatus, but none discloses the present invention. There is a need for an effective and economical artificial lung which actually replaces an organic lung in humans and other mammals with the dual capability of either being inserted within the body or positioned outside the body. The electrical power is supplied by an energizing system.
The related art of interest will be discussed in the order of perceived relevance to the present invention.
U.S. Pat. No. 5,192,320 issued on Mar. 9, 1993, to Takanori Anazawa et al. describes a membrane-type artificial lung adapted to perform an exchange of gases between blood and an oxygen-containing gas through a membrane by passing blood over one side of the membrane and either oxygen or an oxygen-containing gas over the other side. The membrane is a hollow fiber membrane which is composed mainly of polyolefin, and has an inside diameter of 10 to 500 micrometers, a thickness of 5 to 100 micrometers, a porosity of 7-50%, an oxygen flux of at least 1×10
−6
[cm
3
(STP)/cm
2
.sec.cm Hg)], and is substantially impermeable to ethanol. Hollow fiber membranes are made from either poly(4-methylpentene-1), silicone, or polypropylene. In the intracapilliary blood flow mode, the artificial lung has 1,000 to 100,000 hollow fibers in a cylindrical shape of a diameter of 25 cm. and a length not more than 30 cm. When the artificial lung is used as an extracapillary blood flow mode, the lung includes 1,000 to 60,000 hollow fibers with a diameter of 20 cm. and a length not more than 30 cm. The lung device is distinguishable for requiring a large number of fibers and a large size.
U.S. Pat. No. 4,231,988 issued on Nov. 4, 1980, to Motoji Jurata describes an artificial lung comprising two oxygen blowing stages in an upright cylindrical housing containing a plurality of oxygenation tubes arranged coaxially, and including defoaming means. The device is distinguishable for requiring two oxygenation stages and a defoaming means.
U.S. Pat. No. 4,650,457 issued on Mar. 17, 1987, to Tohru Morioka et al. describes an apparatus for extracorporeal assistance including a pump device having a flexible blood reservoir housed in a rigid housing. The pump expands and contracts the blood reservoir to repeat cycles of blood feed and blood take-off. A membrane artificial lung is included at the end to feed oxygenated blood via a catheter to the patient. The membrane artificial lung may be coil type, plate type, or of hollow fiber type which is preferred. The membrane may be a silicone polymer membrane, or a porous membrane of polypropylene, polyethylene, polytetraf luoroethylene, or polysulfone alone or filled with silicone oil. The lung device containing system is distinguishable for requiring a pump.
U.S. Pat. No. 5,263,982 issued on Nov. 23, 1993, to Yasushi Shimomura et al. describes a hollow fiber membrane type artificial lung comprising a cylindrical casing having an upper head cap with a fresh air inlet and an oxygenated blood outlet. The lower head cap has a centered duct for receiving blood and an outlet for oxygenated air. The hollow fibers are collected either in parallel or twilled, wherein one fiber passes over one fiber and over two or more warp fibers to give the appearance of diagonal lines. One fiber or 2 to 20 fibers with preferably 4 to 6 fibers can be used by forming on a collecting rod later removed. Polypropylene fibers are preferred, but polyethylene, polytetrafluoroethylene, polysulfon, polyacrylonitrile, polyurethane, and silicon can be used. The fibers can be porous (0.01 to 1 micron diameter pores) or non-porous. The device is distinguishable for requiring a centered channel in the twilled fibers.
U.S. Pat. No. 4,239,729 issued on Dec. 16, 1980, to Hiroshi Hasegawa et al. describes a blood oxygenator device comprising a cylindrical housing provided with inlet and outlet ports for oxygen, and a bundle of hollow fibers inside arranged in parallel and axially. A second embodiment has a fastened mid-portion aided by a circular inward projection. The porous hollow fibers are made of polyolefin resin, sized at 100 to 300 microns in inner diameter and 10 to 50 microns in wall thickness, and have an average pore size of 200 to 1,000 Angstroms and porosity of 20 to 80%. The blood oxygenator device is distinguishable for being limited to the oxygenator housing.
The following six patents require a heat exchanger in their artificial lung devices, which heat exchanger is not required in the present invention.
U.S. Pat. No. 5,034,188 issued on Jul. 23, 1991, to Hikaru Nakanishi et al. describes an artificial lung comprising a venous blood reservoir to receive and store venous blood which is passed through a heat exchanger to a blood oxygenator concentrically arranged within the heat exchanger. The hollow fibers are spirally wound to form a plurality of bundle layers. The device is distinguishable for requiring blood storage, a heat exchanger, a concentrically arranged blood oxygenator, and an external pump.
U.S. Pat. No. 4,376,095 issued on Mar. 8, 1983, to Hiroshi Hasegawa describes a hollow fiber-type artificial lung device having two adjacent housings for a hollow fiber bundle followed by a heat exchanger. The device is distinguishable for requiring an integrated downstream heat exchanger.
U.S. Pat. No. 5,084,244 issued on Jan. 28, 1992, to Tomonori Muramoto describes an artificial lung assembly comprising a two-piece cylindrical housing of a combined heat exchanger unit and oxygenator unit used for treating blood from a patient. The lower oxygenator unit utilizes straight conventional hollow fibers positioned in parallel. The device is distinguishable for requiring a heat exchanger for heating the incoming blood.
U.S. Pat. No. 4,188,360 issued on Feb. 12, 1980, to Motoji Kurata describes an artificial lung with a built-in heat exchanger comprising an outer cylindrical housing, an inner cylindrical member, and a shortened intermediate member. A plurality of tubes are disposed axially within the inner cylindrical element through which a heat exchange medium is circulated. The oxygenation is carried out in the inner cylindrical member while heat exchange is performed between the blood and the heat exchange medium. The device is distinguishable for the physical structure and the requirement of an integrated heat exchanger structure.
U.K. Patent Application No. GB 2 082 475 A published on Mar. 10, 1982, for Juro Wada et al. describes an artificial lung device comprising the direction of venous blood to a reservoir by filtering and pumping. The blood is pumped sequentially to a heat exchanger, an artificial lung, a second reservoir tank, a second blood pump, and filter before returning to the patient. Water from the blood is removed between the oxygenator and the reservoir tank. The oxygenator utilizes polyacrylonitrile type membranes. The system is distinguishable for requiring various pumps and a heat exchanger.
U.K. Patent Application No. 1 415 946 published on Dec. 3, 1975, for Rhone-Poulenc, S. A. describes an artificial lung device used in a first chamber of a two-chamber system. The second chamber is an air conditioning device to bring air to a desired temperature and degree of humidity. Pumps feed the incoming blood and treated blood. A third vacuum pump is required for recycling air and discarding a bleed-off to the atmosphere. Other elements of the air treatment system require in sequence pure compressed oxygen, a gas injector, flow meters, a soda-lime purifier element, and a mixer element. The system is distinguishable for requiring pure oxygen, a gas ejector, a soda-lime treatment, and conditioning of the air i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Artificial lung device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Artificial lung device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Artificial lung device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3238492

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.