Artificial bone graft implant

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S023510, C623S023760, C623S023560

Reexamination Certificate

active

06607557

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to artificial bone graph implants and more specifically to artificial bone graft implants constructed so as to allow bone ingrowth while maintaining a load-bearing strength similar to natural bone.
BACKGROUND OF THE INVENTION
There are numerous surgical situations in which bone grafts are used as part of the surgical procedure. For example, bone grafts are used in facial reconstruction, in repairing long bone defects, and in spinal surgery such as intervertebral discectomy and fusion in which a bone graft implant replaces a spinal disc in the intervertebral space.
Bone used for bone graft implants is often removed from another portion of a patient's body, which is called an autograft. A significant advantage of using a patient's own bone is the avoidance of tissue rejection, but harvesting bone also has its shortcomings. There is a risk to the patient in having a second surgical procedure (bone harvesting) performed at a secondary site which can lead to infection or additional pain to the patient. Further, the bone harvesting site is weakened by the removal of the bone. Also, the bone graft implant may not be perfectly shaped which can cause misplacement of the implant. This can lead to slippage or absorption of the implant, or failure of the implant to fuse with the bone it is in contact with.
Other options for a bone graft source is bone removed from cadavers, called allograft, or from an animal, called xenograft. While these kinds of bone grafts relieve the patient of having a secondary surgical site as a possible source of infection or pain, this option carries a high incidence of graft rejection and an increased risk of the transmission of communicable diseases.
An alternative to using living bone graft implants is the use of a manufactured implant made of a synthetic material that is biologically compatible with the body. With varying success, several synthetic compositions and various geometries of such implants have been utilized. In some instances, the implanting surgery of such implants is accomplished without difficulty, but the results can be unsatisfactory because any minor dents or imperfections in the implant can cause poor bone-to-implant bonding or an implant having a very high porosity can collapse due to lack of mechanical strength. In other instances, the artificial implant requires a complex surgical procedure that is difficult to perform and may not lead to correction of the problem again, because of the above discussed side effects or dislocation of the artificial implant. Presently, no fully satisfactory artificial implant is known that can be implanted with a relatively straight-forward procedure.
Considerable study has been devoted to the development of materials that can be used for medical implants, including load-bearing implants, while allowing ingrowth of new bone tissue into the implant. To be suitable for this use, the material must meet several criteria, namely biocompatibility, porosity which allows tissue ingrowth and a mechanical strength suitable to bearing loads expected of natural bone without greatly exceed the natural bone's stiffness.
Several materials have been examined as potential implant materials including ceramics, such as hydroxylapatite, Ca
10
(PO
4
)
6
(OH)
2
, hardened polymers and biocompatible metals. Hydroxylapatite (HAp) has been of particular interest because of its similarity to natural bone mineral, but it has only been used for low load bearing applications as pure porous HAp itself is relatively low in mechanical strength and may not serve as a good prosthetic material for high load bearing implants.
Studies have been directed at improving the mechanical strength properties of an HAp material in order to render it suitable as a high load bearing prosthetic material. European patent EP 0577342A1 to Bonfield et al. discloses a sintered composite of HAp and a biocompatible glass based on CaO and P
2
O
5
that may be used in dental and medical applications as a replacement for unmodified HAp. To date, improvements in the mechanical strength of HAp material has been achieved at the expense of its porosity. Upon densification necessary to achieve adequate load bearing strength, the HAp material has a porosity which is insufficient to provide the desired degree of bone ingrowth.
In a study entitled “Dense/porous Layered Apatite Ceramics Prepared by HIP Post Sintering,”
Materials Science,
Vol. 8, No. 10, pp 1203 (October, 1989), by Ioku et al., the preparation of layers of dense HAp and porous HAp from two different types of HAp powder is discussed. This structure is prepared by first densifying specially produced fine crystals of HAp with a post-sintering process employing hot isostatic pressing (HIP). Then a commercial, coarse HAp powder is molded in layers with the densified HAp. Despite its being of academic interest, this type of HAp structure is not suitable for fabrication into load bearing bone prosthetic device configurations in which natural bone ingrowth may be achieved because of its lack of strength. However, Ioku suggests that the addition of zirconia whiskers into the dense HAp layer might provide some of the toughness necessary for hard-tissue prosthetic applications.
Still desired in the art is an artificial bone graft implant that is formed of a biocompatible mineral material similar to bone which possesses compressive strength close to that of natural bone while providing for ingrowth of bone tissue for permanent fixation.
SUMMARY OF THE INVENTION
The present invention provides an artificial bone graft implant formed of a biocompatible mineral material which possesses compressive strength similar to that of natural bone and allows bone tissue ingrowth for permanent fixations. The artificial bone graft implant is used as a replacement for living bone material in surgical procedures requiring the use of bone graft material. The inventive implant has a body configured to be implanted into a prepared site in a patient's bone tissue, with the body having a pair of opposed outer surfaces defining the body. A first and a second porous portion form the body with the first and second porous portions having pores of different sizes such that the average pore size of the first porous portion is greater than the average pore size of the second porous portion. The first porous portion of the body is formed in the shape of a core, with the core being in contact with the opposed outer surfaces of the body, and the second porous portion of the body is formed in the shape of an outer shell. The pore size of the first porous portion of the implant allows for the ingrowth of bone tissue while the pore size of the second portion of the implant allows for a load bearing capacity similar to natural bone.
As will subsequently be described, the unique hybrid structure of a dense outer shell and a porous core provides load bearing support while simultaneously allowing bone ingrowth. The implant of the invention may be readily implanted by established surgical procedures, with minimal need to alter known surgical procedures. The hybrid porous/dense construction of the implant ensures normal load bearing and support through the eventual ingrowth of bone tissue, and minimizes the likelihood of implant dislocation relative to adjacent bone tissue either during surgery or during the post-operative fusion process.


REFERENCES:
patent: 3867728 (1975-02-01), Stubstad et al.
patent: 4164794 (1979-08-01), Spector et al.
patent: 4351069 (1982-09-01), Ballintyn et al.
patent: 4542539 (1985-09-01), Rowe et al.
patent: 4629464 (1986-12-01), Takata et al.
patent: 4756862 (1988-07-01), Spector et al.
patent: 4863472 (1989-09-01), Tormala et al.
patent: 5152791 (1992-10-01), Hakamatsuka et al.
patent: 5258043 (1993-11-01), Stone
patent: 5279831 (1994-01-01), Constantz et al.
patent: 5306307 (1994-04-01), Senter et al.
patent: 5306308 (1994-04-01), Gross et al.
patent: 5306309 (1994-04-01), Wagner et al.
patent: 5769897 (1998-06-01), Harle
patent: 6149688 (2000-11-01), Br

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Artificial bone graft implant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Artificial bone graft implant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Artificial bone graft implant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3095004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.