Artificial antibodies to corticosteroids prepared by...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S331180

Reexamination Certificate

active

06255461

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to artificial antibodies that selectively recognize steroids and act as antibody and receptor binding mimics. More specifically, the present invention relates to molecularly imprinted polymers (MIPs) that selectively recognize cortisol and corticosterone based steroids, their preparation and use in analyses, therapies and separation procedures.
BACKGROUND OF THE INVENTION
Molecular imprinting is a technique devised to generate a polymeric material that is analyte specific. The analyte can be any organic molecule, biological or macromolecule. Molecular imprinting has been used to prepare materials that recognize proteins or other biological compounds, especially where the structural information needed for rational design is lacking. Likewise, if a natural receptor is poorly characterized or difficult to isolate, artificially prepared mimics may serve as a useful alternative. Furthermore, such polymers are considerably less costly to produce when compared to, e.g., antibodies and receptors.
Antibodies are used in several areas, such as therapy, immunoaffinity and purification. Of particular interest is the use of antibodies in immunoassays. However, antibodies for these procedures are normally produced by immunizing animals with the corresponding antigen leading to polyclonal antibodies, or by using fused cells (B cells) allowing the obtained cell lines to produce monoclonal antibodies.
As an alternative, some non-biologically derived antibody mimics or artificial antibodies have been described. For example, the anti-theophylline and anti-diazepam polymers, i.e., mimics, prepared in accordance with the teachings of PCT Application WO 94/11403, the entirety of which is incorporated herein by reference. Such polymer structures are similar to biological antibodies in binding and recognizing antigens and avoid the need for animal sources. These antibody mimics are especially useful where it is difficult or impossible to raise antibodies.
The object of creating artificial counterparts to natural macromolecular binding entities, such as proteins, is of great interest. Employing natural macromolecules in rough environments such as high temperatures and pressures (e.g., sterilization conditions) is of major concern for many applications because of their natural sensitive properties. Furthermore, the efficiency and selectivity exerted by, e.g., receptors interacting with agonists and antagonists or antibodies recognizing antigens, is difficult to reproduce in synthetic systems [1]. Molecular imprinting provides an alternative to other approaches such as sophisticated procedures used in the field of supramolecular chemistry [2].
The rapidly mushrooming field of molecular imprinting is derived from the concept of creating designed recognition sites in macromolecular matrices by means of template polymerization [3-7]. Molecularly imprinted polymers have been shown to possess remarkable recognition properties that have been used in various fields such as drug separations [8-10], receptor mimics [11-14], bio-mimetic sensors [15], antibody mimics [16], template-assisted synthesis [17] and catalysis [18-19].
Of particular interest are the corticosteroids produced in the adrenal cortex and possess numerous and wide-spread effects in vivo. For example, the corticosteroids influence (1) metabolism, (2) electrolyte and water balance, (3) anti-inflammatory action, and (4) functions of the nervous system [20]. Many medical analyses where corticosteroids are of concern, e.g., in the assessment of the functional status of the adrenal cortex, utilize antibody-based assay methods such as RIA and ELISA for the selective recognition of a desired corticosteroid [21]. However, in addition to the general biological interest of steroid interactions with, e.g., antibodies and receptors, these substances are potentially useful for the study of molecular recognition phenomena [22]. The rigid structure of the fused ring system leads to a minimized number of conformations that the molecules may adopt in the interactions with recognition matrices resulting in higher binding strength since the entropy loss in binding is smaller [23] and a multitude of structurally very closely resembling structures are available. However, the limited number of polar interacting points necessary for non-covalent interactions inevitably leads to a decreased binding performance, and molecularly imprinted polymers against steroids have previously only been acquired using strong covalent binding systems such as carboxylic esters and carbonic acid esters [17,24].
Thus, a need exists for molecularly imprinted polymers (MIPs) that selectively recognizing steroid structures, steroid hormones, and in particular, steroids such as cortisol and corticosterone based steroids.
SUMMARY OF THE INVENTION
The present invention relates to molecular imprinting as a tool for making polymers that mimic anti-corticosteroid antibody binding, the artificial antibodies, their preparation and use. Molecularly imprinted polymers were prepared against cortisol and corticosterone compounds and the ligand specificity was assayed using a radioimmunoassay technique. The binding characteristics of the cortisol and corticosterone imprinted polymers were estimated and equilibrium constants were determined.
An object of the present invention is to provide an artificial antibody, formed from polymerizable monomers, containing preset binding sites for a hormone steroid compound or derivative.
Another object of the present invention is to provide an artificial antibody, formed from polymerizable monomers, containing preset binding sites for a corticosteroid compound or derivative.
Another object of the present invention is to provide a process for preparing an artificial antibody, formed from polymerizable monomers, containing preset binding sites for a corticosteroid compound or derivative, i.e., print molecule.
A still further object is to provide a process where the polymerization of functional monomers is carried out in the presence of a porogenic solvent and, a corticosteroid print molecule which is non-covalently bound to the functional groups of the monomer and/or copolymer. Subsequent removal of the print molecule from the rigid polymer results in sites within the polymer that are complementary to and have an affinity for the original print molecule. The sites provide a preset or predetermined spatial orientation of the polymer's functional groups to selectively separate a molecule or compound of interest.
A still further object of the present invention is to provide a process for separating steroids by using the antibody mimics according to the present invention.
Another object of the present invention is the use of the corticosteroid selective mimics in immuno and radioimmunoassay procedures.
A further object of the present invention is the use of artificial antibodies (corticosteroid selective mimics) in therapies and/or diagnoses, in which artificial antibodies are administrated to a mammal body, which artificial antibodies consist of a biocompatible polymer carrying specific binding sites mimicking the properties of antibodies towards an organic molecule.
These and other objects and advantages will become more apparent when considered with the following detailed description, non-limiting examples and drawings.


REFERENCES:
patent: 5630978 (1997-05-01), Domb
patent: 5804563 (1998-09-01), Still et al.
patent: 94/11403 (1994-05-01), None
patent: WO 94/11403 (1994-05-01), None
patent: WO 94/14835 (1994-07-01), None
patent: WO 94/26381 (1994-11-01), None
B. Sellergren et al, J. Am. Chem. Soc., vol. 110, pp. 5853-5860. Highly Enantioselective and Substrate-Selective Polymers Obtained by Molecular Imprinting Utilizing Noncovalent Interactions, 1988.*
H. Dugas,Bioorganic Chemistry. A Chemical Approach to Enzyme Action, 1989. Table of Contents Only.
G. Wulff,Molecular Impri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Artificial antibodies to corticosteroids prepared by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Artificial antibodies to corticosteroids prepared by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Artificial antibodies to corticosteroids prepared by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2440150

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.