Articulating bifurcation graft

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Bifurcated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06197049

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an endoluminal vascular prosthesis, and in particular, to a self-expanding bifurcated prosthesis for use in the treatment of abdominal aortic aneurysms.
An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen. The abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum. The aorta is the main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
The aneurysm usually arises in the infrarenal portion of the diseased aorta, for example, below the kidneys. When left untreated, the aneurysm may eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture led initially to transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks. There is considerable mortality and morbidity associated with this magnitude of surgical intervention, which in essence involves replacing the diseased and aneurysmal segment of blood vessel with a prosthetic device which typically is a synthetic tube, or graft, usually fabricated of Polyester, Urethane, DACRON®, TEFLON®, or other suitable material.
To perform the surgical procedure requires exposure of the aorta through an abdominal incision which can extend from the rib cage to the pubis. The aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed. Small arterial branches from the back wall of the aorta are tied off. The DACRON® tube, or graft, of approximately the same size of the normal aorta is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
If the surgery is performed prior to rupturing of the abdominal aortic aneurysm, the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically slightly less than 10%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.5%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
Disadvantages associated with the conventional, prior art surgery, in addition to the high mortality rate include the extended recovery period associated with such surgery; difficulties in suturing the graft, or tube, to the aorta; the loss of the existing aorta wall and thrombosis to support and reinforce the graft; the unsuitability of the surgery for many patients having abdominal aortic aneurysms; and the problems associated with performing the surgery on an emergency basis after the aneurysm has ruptured. A patient can expect to spend from one to two weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from two to three months, particularly if the patient has other illnesses such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. The graft must be secured, or sutured, to the remaining portion of the aorta, which may be difficult to perform because of the thrombosis present on the remaining portion of the aorta. Moreover, the remaining portion of the aorta wall is frequently friable, or easily crumbled.
Since many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver, and/or kidney disease, coupled with the fact that many of these patients are older, the average age being approximately 67 years old, these patients are not ideal candidates for such major surgery.
More recently, a significantly less invasive clinical approach to aneurysm repair, known as endovascular grafting, has been developed. Parodi, et al. provide one of the first clinical descriptions of this therapy. Parodi, J. C., et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms,” 5 Annals of Vascular Surgery 491 (1991). Endovascular grafting involves the transluminal placement of a prosthetic arterial graft within the lumen of the artery.
In general, transluminally implantable prostheses adapted for use in the abdominal aorta comprise a tubular wire cage surrounded by a tubular PTFE or Dacron sleeve. Both balloon expandable and self expandable support structures have been proposed. Endovascular grafts adapted to treat both straight segment and bifurcation aneurysms have also been proposed.
Notwithstanding the foregoing, there remains a need for a structurally simple, easily deployable transluminally implantable endovascular prosthesis, with a support structure adaptable to span either a straight or bifurcated abdominal aortic aneurysm. Preferably, the tubular prosthesis can be self expanded at the site to treat the abdominal aortic aneurysm, and exhibits flexibility to accommodate nonlinear anatomies and normal anatomical movement.
SUMMARY OF THE INVENTION
There is provided in accordance with one aspect of the present invention, a moveable link for securing two portions of the wall of a tubular endovascular prosthesis. The link comprises a first wire portion having two side-by-side legs extending in a first direction and an apex thereon. A second wire portion is positioned adjacent the first wire portion. The first wire portion is wrapped around the second wire portion so that at least a portion of the apex faces in the first direction to at least partially entrap the second wire portion.
In accordance with another aspect of the present invention, there is provided an endoluminal prosthesis. The prosthesis comprises a tubular wire support having a proximal end, a distal end and a central lumen extending therethrough. The wire support comprises at least a first and a second axially adjacent tubular segments, joined by at least one folded link extending therebetween. The first and second segments and the link are preferably formed from a single length of wire.
Preferably, at least three folded links are provided between the first and second segments. The wire in each segment preferably comprises a series of proximal bends, a series of distal bends, creating a series of strut segments connecting the proximal bends and the distal bends to form a tubular segment wall. The folded link comprises a proximal or distal bend, together with a portion of two struts joined by the bend, extending through the loop formed by the other of the proximal and distal bends, to moveably link adjacent segments.
In accordance with a further aspect of the present invention, there is provided a wire support structure for a bifurcated endoluminal prosthesis. The wire support comprises a main body and first and second branch support structures, each having a proximal end, a distal end and a central lumen extending therethrough. The distal end of the first branch support structure is pivotably connected to the proximal end of the main body support structure. Similarly, the distal end of the second branch support structure is pivotably con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Articulating bifurcation graft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Articulating bifurcation graft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Articulating bifurcation graft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2511266

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.