Articles comprising novel polymeric blue...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S241000

Reexamination Certificate

active

06528564

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an inventive blue colorant comprising a chromophore having at least one poly(oxyalkylene) chain attached, through aromatic amino group (or groups), to the 1-position, the 4-position, or both, of an anthraquinone backbone. Such colorants exhibit excellent amine/base stability and thermal stability, effective colorations, excellent low extraction rates, and high lightfastness levels, particularly when incorporated within certain media and/or on the surface of certain substrates, particularly polyesters, polyolefins, and polyurethanes. The poly(oxyalkylene) chain or chains can be conveniently tailored to increase the solubility or compatibility in different solvents or resins thereby permitting the introduction of such excellent coloring chromophores within diverse media and/or or diverse substrates as well as provides a liquid colorant which facilitates handling. Compositions and articles comprising such colorants are provided as well as methods for producing such inventive colorants.
DISCUSSION OF THE PRIOR ART
All U.S. patents cited within this specification are hereby incorporated by reference.
There continues to be a need to provide versatile colorants within various applications such that the coloring agent itself exhibits excellent colorations high thermal stability and amine/base stability, excellent lightfastness, low extraction (or drastic reduction in possibility of removal therefrom via extraction by solvents or like sources), ease in handling, ability to mix thoroughly with other coloring agents and thus to provide effective different hues and tints within or on target substrates, and acceptable toxicity levels. There has been a need to provide improved colorants meeting this criteria for certain thermosets such as polyurethane foam applications, and thermoplastic media, such as polyesters, such that the colorants themselves exhibit excellent compatibility therein (for instance in terms of intrinisic viscosity loss and the other characteristics desired for such plastics as noted above). In particular, such characteristics for polyesters are desired for colorants that absorb, for example, though not necessarily, within the blue portion of the visible spectrum. It is believed and, as noted above, has been determined that such desirable polyester plastic colorations with the characteristics noted above are possible through the addition of certain pendant groups [such as, for example poly(oxyalkylene) groups] to the chromophore backbone which do not act as couplers or color modifiers and thus ay chromophore (and resultant hue or tint) may be utilized with the inventive anthraquinone chromophore itself.
Previous coloring agents for such end-uses have included pigments, dyes, or dyestuffs, with each having its own drawback, be it an extraction problem from the finished article, a handling problem during manufacturing due to solid dust particles, or a staining problem, due to the difficulty associated with cleaning coloring agents from manufacturing machinery after colored plastic production, and other like issues. As a result, the application of such pigments, dyes, and/or dyestuffs as colorants within plastics (such as polyesters, polyolefins, polyurethanes, and the like) is greatly limited and far from satisfactory due to such physical limitations. However, the utilization of such colorants is highly desired for the hues and shades they provide, within the ultimate thermoplastic and thermoset articles themselves. As a result, there is a clear desire to provide easier to handle, more thermally stable, less extractable, more base/amine stable, more compatible with to-be-colored substrates or resins, easy-to-clean, etc, coloring agents for introduction within thermoplastic and thermoset articles to provide decorative, aesthetic, and other like effects. Facilitating the introduction of such chromophores within such formulations is thus a highly desired target within the colored thermoplastic and thermoset industry, whether it be in terms of handling, thermal stability, extraction, base/amine stability, compatibility, cleaning, or the like.
Attempts to meet this desire have included the introduction of certain standard types of polymeric colorants within plastics (be they thermoplastics or thermoset types). Such colorants are primarily poly(oxyalkylenated) compounds, such as triphenylmethanes (i.e., those found within U.S. Pat. No. 4,992,204, to Kluger et al.) aliphatic amino anthraquinones (i.e., those found within U.S. Pat. No. 4,137,243 to Farmer, and U.S. Pat. No. 4,846,846 to Rekers et al.), and the like; however, they also tend to exhibit certain problems during incorporation into thermosets and/or thermoplastics. In thermosets such as polyurethane foam, many of these previously disclosed compositions, particularly those including the blue triphenylmethane colorants, exhibit discoloration problem in association with the basic catalysts utilized and/or with the high exotherm generated during target foam formation (triphenylmethane moieties of such colorants are susceptible to attack by nucleophilic catalysts and their residues); and for those colorants such as aliphatic amino anthraquinones (for example, Reactint® Blue X17 from Milliken & Company) are not stable to high TDI index during polyurethane foam formation (active hydrogen sites located on the chromophore have been observed to react with isocyanate groups to alter the shade of product). In thermoplastic compositions such as polyester, many of the previously disclosed compositions, particularly those including triphenylmethanes and/or aliphatic amino anthraquinones, are very unstable at within requisite processing temperature range. As a result, the colorations provided by such polymeric colorants may be reduced in strength or changed in shade under such circumstances. Other types of colorants have been discussed within the prior art, such as azos and diazos, but the specific colorations provided by such compounds are limited to certain hues and their utilization within polyesters is suspect from a number of perspectives (such as toxicity, lightfastness, thermal stability, and the like). There is thus a desire to introduce new types of colorants comprising different types of chromophores for the purpose of providing new, effective, versatile colorants for such myriad end-uses as noted above and that exhibit excellent colorations, extraction, thermal stability, amine/base stability, compatibility with other coloring agents and/or polymer additives and/or substrates/resins/media, as well as low toxicity.
In thermoplastics, particularly polyester, one approach to obtain the desired coloration has been to use difunctional dyes that possess the necessary pendant groups to allow them to be copolymerized, exemplified within U.S. Pat. No. 4,403,092 to Davis et al. Though such a method provides effectively colored thermoplastics with good performance such as excellent extraction (due to the copolymerized nature of the dyes), good lightfastness, and the like, there are many drawbacks to such technology. Primarily, such drawbacks include that the colorants have to be added during the polymerization of polyesters thus the necessity of dedicating a high cost polyester production vessel to color due to the inherent and difficult-to-remedy contamination of the vessel by the colorant (which invariably limits flexibility in manufacturing of resins). Furthermore, another drawback is the necessity of the end user or article manufacturer to store large varieties of colored resins of different shades, thus limits the flexibility and adds cost to the end user. The colorants disclosed, for example within U.S. Pat. No. 4,403,092, are inherently powdered or solid in nature and thus are not suitable for direct addition to the molten plastic during any injection molding step. Such powdered coloring agents are developed solely for actual polymerization within the target resin prior to any molding, injection, and other like process step. Drawbacks, thus, to these powdered types inclu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Articles comprising novel polymeric blue... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Articles comprising novel polymeric blue..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Articles comprising novel polymeric blue... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3000669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.