Article transfer apparatuses

Material or article handling – Device for emptying portable receptacle – For emptying contents thereof into portable receiving means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S761000, C414S421000, C414S742000, C414S773000

Reexamination Certificate

active

06468018

ABSTRACT:

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
FIELD OF THE INVENTION
The present invention is directed generally to the bulk transfer of articles between containers and, more particularly, to the bulk transfer of ordered articles, namely, semiconductor wafers, between partitioned carriers.
BACKGROUND OF THE INVENTION
Integrated circuits are solid state devices in which electrical components and electrical connections between the components are incorporated into a solid matrix. The electrical components and connections are produced by the strategic placement of various conducting, semiconducting and insulating materials to form and encapsulate the desired circuit in the composite solid matrix. The development of the integrated circuit has led to the miniaturization of electronics by providing a strong matrix to support and protect fragile miniaturized components and connections and by facilitating the placement of the electrical components in close proximity. The integrated circuit has further served to increase the reliability of electronic devices by the elimination of moving parts and fragile electrical wiring and connections.
Integrated circuits are typically mass produced by forming hundreds of circuits, called dice, on a semiconductor substrate, or “wafer”. The circuits are formed by depositing a series of individual layers of predetermined materials on the wafer. The individual layers of the integrated circuit are, in turn, produced by a series of manufacturing steps. The precise characteristics of the layers, such as composition, thickness, and surface quality, uniquely determine the electronic properties and the performance of the integrated circuit.
The integrated circuits must be produced in a clean environment to prevent contamination of the layers by foreign matter that will degrade the performance of circuits. Contamination level requirements in semiconductor wafer processing areas (“clean rooms”) are typically less than 1 particle/ft
3
air (referred to as Class 1 cleanliness). To achieve these requirements, special high volume ventilation systems are necessary to continually filter the surrounding air. The ventilation systems represent a significant contribution to the overall wafer production cost. Therefore, a significant savings can be realized by minimizing the size of the clean room, and thereby lessening the costs associated with operating the clean room.
In addition, the production of integrated circuits subjects the semiconductor wafers to a number of different processes and environmental conditions. Wafer carriers are used to store, transport, and track the wafers in bulk lots through and between the various processes. However, a single carrier is not typically suitable for exposure to all of the different environmental conditions encountered during processing. Therefore, the wafers must be transferred to more suitable carriers at various stages of processing.
Wafer transfer machines are typically used to transfer the wafers between carriers and/or boats. The machines generally include a base upon which a first carrier containing the wafers and a second empty carrier are placed in fixed opposing positions. A transfer arm is either manually or automatically translated to contact and push the wafers from the first carrier to the second carrier.
One problem with the wafer transfer machines currently used in industry is that the machines are generally capable of transferring only one size wafer or are designed for only one type of carrier or boat. As a result, a different machine must be acquired and placed in the clean room for each wafer size to be processed or each boat type used. The additional machines unnecessarily adds to the overall wafer production costs in terms of increased equipment and maintenance costs and increased clean room space requirements to house the equipment.
Another problem with current wafer transfer machines is that the surface or face of the wafers must be perpendicular to gravity to allow the wafers to be moved between carriers. Wafers are normally stored and transported in the carriers with the surface or face aligned generally parallel to the gravitational field. The additional handling of the carriers necessary to transfer the wafers in this manner increases the potential for damage to the wafers. The additional handling may also be awkward for personnel and could result in injuries.
Yet another problem with current wafer carrier machines is that wafer carriers must be constructed to allow access by the transfer arm to push the wafers between carriers. Therefore, the shape of the carrier cannot be optimized for the specific process in which the carrier is used.
In view of these and other problems, there is generally a need for improved article transfer apparatuses and methods. Specifically, there is a need for article transfer machines that can be used to perform wafer transfer operations for different size wafers and carriers with more ergonomically conducive, but less overall, handling, thereby reducing associated equipment and clean room costs and injuries to personnel.
BRIEF SUMMARY OF THE INVENTION
The above objectives and others are accomplished by methods and apparatuses in accordance with the present invention. The transfer of articles is generally performed by aligning a carrier containing at least one article to be transferred in an opposing relationship with an empty carrier. The aligned carriers are rotated through a gravitational field to transfer the articles between the carriers.
An apparatus for transferring articles preferably includes a fulcrum and a lever arm having a transfer end. The lever arm is attached to the fulcrum to allow the lever arm to be rotated about the fulcrum. The transfer end includes a clamp having first and second adjacent carrier retaining portions configured to retain two carriers in an opposing relationship that allows for the transfer of articles between the carriers. In a preferred embodiment, the lever arm further includes a balance end and the lever arm is attached to the fulcrum between the balance end and the transfer end. Also in a preferred embodiment, horizontal and vertical adjustments are included to accommodate carriers having different sizes. In a current preferred embodiment, the transfer machine is manually operated to transfer wafers between two carriers; however, the machine can be automated, and also suitably modified to transfer wafers between a plurality of pairs of carriers.
In an alternative embodiment, the apparatus includes a positioning device used to position a rotating member and a clamp attached thereto in a transfer position. The carriers having previously been attached to the clamp are rotated, preferably about a central axis passing through the carriers, to transfer the ordered articles between the carriers. In one embodiment of the invention, the positioning device includes two translatable lifts positioned on opposing sides of the carriers. The rotating member is rotatably disposed between the lifts. In another embodiment, the positioning device includes a lever arm and fulcrum that are used to rotate the rotating member to the transfer position.
The apparatuses and methods of the present invention provide increased versatility in transferring articles and lessen the handling of the carriers required to bring about the transfer. Accordingly, the present invention overcomes the aforementioned problems and provides apparatuses and methods for effectively and efficiently transferring articles in bulk between carriers. These advantages and others will become apparent from the following detailed description.


REFERENCES:
patent: 2413096 (1946-12-01), Barker
patent: 2468201 (1949-04-01), Hoover
patent: 2560463 (1951-07-01), Matson
patent: 3949891 (1976-04-01), Butler et al.
patent: 4431361 (1984-02-01), Bayne
patent: 4728246 (1988-03-01), Mello
patent: 4743156 (1988-05-01), Raffay et al.
patent: 4770590 (1988-09-01), Hugues et al.
patent: 4778332 (1988-10-01), Byers et al.
patent: 4830564 (1989-05-01), Walker et al.
patent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Article transfer apparatuses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Article transfer apparatuses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Article transfer apparatuses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2949798

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.