Article having a continuous thermoplastic coating

Surgery – Means and methods for collecting body fluids or waste material – Absorbent pad for external or internal application and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06583332

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a non-contact coating method for producing a continuous coating and articles constructed therefrom. This invention further relates to a method for producing a textile material with a moisture-impermeable barrier layer and to a method for producing a moisture-absorbing article of hygiene which has such a barrier layer. This invention particularly relates to a textile material and hygienic disposable articles comprising a body fluid impermeable barrier layer which can be produced from said coating method. Preferably, the thermoplastic composition used in the coating method for producing the barrier layer exhibits certain rheological characteristics.
BACKGROUND OF THE INVENTION
For various applications, materials are required which are impermeable to liquids such as water and body fluids, but at the same time have a textile character which is as close as possible to materials without the impermeability characteristics. One example of such application is hygienic articles such as disposable diapers, feminine napkins, panty liners, surgical drapes, bed pads, and the like. Such hygienic articles often have a substantial absorption capacity. To ensure that the liquid which is to be absorbed does not reach articles of clothing, such hygienic articles customarily have a continuous layer of a body fluid impermeable film on their garment facing side. Since touching this film material is an unwelcome sensation for a number of users, it has been suggested to cover the outward side of the film with a thin layer of textile material so that the article has a textile feel also on its exterior surface.
EP-A-O 187 728 teaches a disposable diaper with a barrier layer in the form of a plastics material film, typically consisting of a polyolefin, a polyacrylate, of PVC, nylon or other thermoplastic material. The barrier film is laminated, adhered or welded onto a thin nonwoven layer, which makes it necessary to prepare the film laminate off-line. As an alternative, it is suggested that the plastics material of the film is to be extrusion coated onto the nonwoven. The laminate, thus formed, is then used as the outermost material layer in such a way that the film layer is on the inside, so that the outer nonwoven layer provides the desired exterior texture. This production method is rather expensive. High molecular weight plastic materials such as polyethylene, polypropylene, polyacrylate and so on, have low melt flow indices and can (if at all) only be processed into impermeable films on very sophisticated machinery. This would also be true for the suggested direct extrusion coating which does not appear to have been reduced to practice yet. Separately producing the film, with subsequent laminating onto the nonwoven, is even more inefficacious in view of the additional production step required.
U.S. Pat. Nos. 4,692,161 and 4,627,847 teach a leakage waste barrier for the edge of an absorbent hygienic article provided by coating a hot melt adhesive onto the edge area of a nonwoven sheet material. Depending on the actual type of application, this hot melt adhesive can also serve a constructive function, in combination with its function as a barrier, in that it can adhere the nonwoven to other materials of the hygienic article. The hot melt is to be coated in a conventional manner by slot nozzle coating, transfer coating, spray coating or other such methods. The above-mentioned U.S. patents indicate that the hot melt coating must have a minimum thickness of 25 &mgr;m, preferably at least 75 &mgr;m, so that a continuous closed barrier layer is achieved.
Conventional slot nozzle coatings on uneven substrates such as nonwovens are typically done by keeping the slot nozzle in permanent contact with the substrate such that the nozzle lies on the substrate during the coating. It is unproblematic to coat hot melt adhesives onto uneven substrates with slot nozzles or spray coating methods, provided that only a discontinuous coating is required such as for constructive applications wherein the coating weight of the hot melt ranges from about 3 g/m
2
to about 10 g/m
2
. If, however, a continuous layer is to be created, this can only be done using these customary coating methods if the coating weight of the hot melt is greater than about 30 g/m
2
.
Such high coating weights are expensive. Furthermore, direct coating with a slot nozzle provides substantial mechanical and thermal stresses on the coated substrates, especially since the slot nozzle is heated during coating. Therefore, very sensitive substrates such as nonwovens made of very fine or low melting point fibers can not always be coated with hotmelt from a slot nozzle in a customary manner without damaging the substrate. Such problems can not be overcome when coating with heated coating rollers or spray coating with heated airstreams. The high coating weights of this prior art lead to increased stiffness of the coated substrate, thus impairing the textile character.
Similar problems occur in the production of hygienic articles and in other areas, such as fabric production, wherein the resulting materials are required to exhibit liquid impermeability, especially body fluid impermeability, with textile character which is as unimpaired as possible. This is especially pertinent for improving the comfort of the user. Presently, in such technical fields, production methods utilizing preformed laminated films are preferred. Therefore, there remains a need for a noncontact method capable of producing a continuous coating layer having low coating weights.
SUMMARY OF THE INVENTION
The applicants have found a coating method that overcomes the aforementioned problems. The coating method employs a noncontact application wherein a thermoplastic composition is thermally made flowable and released from a coating device onto a substrate. The thermoplastic composition is thus coated onto the substrate without contact between said coating device and said substrate. Preferably, a liquid-impermeable, especially a body fluid impermeable, barrier wherein the textile character is not substantially impaired is produced. Since the method employs low coating weights of the thermoplastic composition, it eliminates the economic disadvantages of current methods as well as improves the tactile quality of the resulting article. Additionally, the method is suitable for coating a variety of heat sensitive materials. Preferably, the substrate is a “textile material” which in the context of this invention means not only a woven material made of yarn, but also any material made from fibers such as nonwoven, as well as nonwoven composites and the like, which materials play a major role in the area of hygienic article production. Since the coating device and substrate do not contact each other, the mechanical stresses on the substrate are much less than prior art methods.
For heat sensitive substrate, the thermoplastic composition is preferably coated at temperatures of less than about 160° C., more preferably less than about 125° C., and most preferably less than 110° C., to reduce the heat-induced stresses on the substrates being coated. This is advantageous for coating and mutually bonding thermally sensitive substrates.
The thermoplastic composition preferably exhibits certain rheological characteristics such that the complex viscosity at high shear rates (1,000 rad/sec) is less than about 500 poise and the complex viscosity at low shear rates (1 rad/sec) is between about 100 and about 1,000 poise. Some neat thermoplastic resins, such as typical film grade polyolefins, may be suitable for the method of the present invention. However, compounded hot melt adhesives are preferred due to the ability to independently control the visco-elastic properties, open time, etc. Compounded hot melts are advantageous to insure adequate adhesion to the carrier substrate or for delayed detackification of the coating after adherence to the substrate.
The resulting coating produced from said method is useful for a variety of applications wherein a consistent c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Article having a continuous thermoplastic coating does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Article having a continuous thermoplastic coating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Article having a continuous thermoplastic coating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3148657

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.