Conveyors: power-driven – Conveying system having plural power-driven conveying sections – Forming a single conveying path
Reexamination Certificate
2003-02-21
2004-03-02
Ridley, Richard (Department: 3651)
Conveyors: power-driven
Conveying system having plural power-driven conveying sections
Forming a single conveying path
C198S594000, C198S370010
Reexamination Certificate
active
06698581
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a guide for controlling the transfer of articles between oppositely running conveyors.
There are many arrangements wherein oppositely running conveyors disposed side by side and generally parallel are used for transporting articles. A common such use is in conveying accumulator systems utilized between an upstream delivery station and a downstream receiving station to accumulate or store articles when the capacity of the downstream receiving station is either shut down or run at a speed wherein it cannot handle the number of articles being fed by the upstream delivery station. Such accumulator systems are well known to those skilled in the art. One particular accumulator is disclosed in U.S. Pat. No. 4,018,325. An additional prior art accumulator system is disclosed in U.S. Pat. No. 4,513,858. With such accumulator systems, and in any other system wherein articles are transferred from one conveyor running in one direction onto another conveyor running in an opposite direction, a device must be provided for controlling the transfer of the articles from one conveyor onto the other.
The present invention relates particularly to an article guide for a transport member or device utilized for controlling the transfer of articles from a first conveyor running in a first direction onto a second conveyor running in a second opposite direction.
OBJECTS AND SUMMARY OF THE INVENTION
Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
The present invention has particular application in conveyor accumulator systems wherein oppositely running and parallel conveyors are used to accumulate and store articles between an upstream receiving station and a downstream delivery station. One such accumulator system is disclosed and described in U.S. Pat. No. 6,260,688 (co-pending U.S. patent application Ser. No. 09/235,888) entitled “Apparatus for Controlling the Flow of Articles.” In particular, the present invention relates to an improvement to the apparatus described in U.S. Pat. No. 6,230,874 B1 entitled “Apparatus for Controlling the Flow of Articles”.
Although conveyors are a feature of the present invention, conventional conveyors are well known to those skilled in the art and need not be described herein in great detail. The features of the conveyors necessary for an understanding of the invention will be sufficiently described.
In accordance with the objects and purposes of the invention, an apparatus is provided for controlling the flow of articles. This apparatus includes a first conveyor driven in a first direction to convey articles thereon in the first direction. A second conveyor is driven in a second opposite direction to convey articles thereon in the opposite direction. As mentioned above, the first and second conveyors may be used in a conventional accumulator system. The conveyors extend generally side by side and parallel with a constant space defined between the inside edges thereof.
A movable transport member is disposed generally across and movable along the space defined between the conveyors. The transport member has a drive member that may be drivingly engaged simultaneously by the first and second conveyors so that the drive member continuously rotates as either of the first or second conveyors moves. The transport member will move linearly between the conveyors so long as a speed differential exists between the conveyors. In other words, if both conveyors are moving linearly in opposite directions but at the same speed, the transport member remains stationary relative to the conveyors but will rotate. If the conveyors are moving in opposite directions but at different speeds, the transfer member will rotate and also move linearly in the direction of the faster conveyor.
In a preferred embodiment, the drive member comprises a toothed wheel that is simultaneously engaged by drive lugs on each of the conveyors.
The transport member also includes an article transfer member. This article transfer member is operably disposed transversely relative to the conveyors to contact and transfer articles from the first conveyor to the second conveyor along a transfer path.
In one preferred embodiment of the invention, the article transfer member further includes an endless drive belt that is disposed along the transfer path so as to contact and move articles therealong. This drive belt may run in an endless path between the drive member and article transfer member. The drive belt is drivingly engaged by the drive member, for example by a belt drive wheel that is operably connected to or driven by the drive member.
In a preferred embodiment, the major components of the movable transport member are mounted or carried on pivotally mounted support members or plates. For example, the article transfer member is preferably mounted on a rear support plate and the drive member is mounted on a front support plate. These front and rear support plates are pivotal relative to each other at a common pivot point. The article transfer member may further include a dead plate that is disposed so as to extend between the conveyors along the transfer path. The articles moved between the conveyors are moved over this dead plate. The dead plate is carried by a support that is also pivotally mounted at the common pivot point but at a different height or level.
The supports or plates for the drive member, article transfer member, and dead plate are pivotally mounted relative to each other to provide for relative movement between the components as the transport member moves through curves defined by the conveyors. It is preferred to precisely control the relative movement between the components so that the flow of articles between the conveyors is not interrupted and is maintained at a relatively constant rate through the conveyor curves. In this manner, in a preferred embodiment, the front and rear support plates and dead plate support are engaged or connected by a gear mechanism so that pivotal movement of either of the front or rear support plates is transferred to the other of the respective front and rear support plates and to the dead plate support as the transport member moves along the conveyor curves. This gear mechanism preferably has a different gear ratio between the front and rear support plates as compared to the dead plate support. The gear ratio for the horseshoe guide support is selected to ensure that the horseshoe guide remains substantially perpendicular to the conveyors as the transport member moves along the conveyor curves.
It should be appreciated that any manner of gear mechanism may be utilized to properly gear the support plates together. In one preferred embodiment, the gear mechanism is mounted to the front support plate and comprises a first gear engaged with the rear support plate and a second gear engaged with the dead plate support. The different gears define the different gear ratios.
In one embodiment of the invention, the article transfer member includes an idler wheel. The transfer path for the articles is defined between the drive belt and a circumferential portion of the idler wheel. The articles may move along the idler wheel as they are transferred between the conveyors. The idle wheel may thus be formed of a relatively low friction producing material so as not to impede the operation of the drive belt that engages and moves the articles.
The article transfer member may also include a rigid guide member. This guide member generally defines the transfer path between the conveyors. The drive belt may be supported by and movable along this guide member. The guide member is carried by a support member that is engaged by at least one of the front, rear, and dead plate supports. The guide member support also includes oppositely extending guide arms that are movable in guide ways defined in the first and second conveyors. Thus, it should be understood that the guide member support wi
Beesley Robert C.
Duterte Olivier P.
Steeber Dorian F.
Dority & Manning
Hartness International
Ridley Richard
LandOfFree
Article guide for an apparatus for controlling the flow of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Article guide for an apparatus for controlling the flow of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Article guide for an apparatus for controlling the flow of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3197818