Active solid-state devices (e.g. – transistors – solid-state diode – Specified wide band gap semiconductor material other than...
Patent
1995-03-14
1996-06-25
Larkins, William D.
Active solid-state devices (e.g., transistors, solid-state diode
Specified wide band gap semiconductor material other than...
257505, H01L 29201
Patent
active
055302670
ABSTRACT:
We have discovered advantageous substrates for III-V nitride semiconductors such as GaN. The substrate material is of the YbFe.sub.2 O.sub.4 or InFeO.sub.3 (ZnO).sub.n structure type and has general composition RAO.sub.3 (MO).sub.n, where R is one or more of Sc, In, Y and the lanthanides (atomic number 67-71); A is one or more of Fe(III), Ga, and Al; M is one or more of Mg, Mn, Fe(II), Co, Cu, Zn and Cd; and n is an integer.gtoreq.1, typically<9. Furthermore, the substrate material is selected to have a lattice constant that provides less than .+-.5% lattice mismatch with the III-V nitride semiconductor material that is to be deposited thereon. At least some of the substrate materials (e.g., ScMgAlO.sub.4) typically can be readily and relatively cheaply produced in single crystal form, are readily clearable on the basal plane, and do essentially not interact chemically with the III-V nitride under typical deposition conditions. Use of the novel substrate materials for opto-electronic device manufacture is contemplated.
REFERENCES:
"GaN, AIN, and InN: A Review", by S. Strite et al., Journal of Vacuum Science and Technology B, vol. 10 (4), Jul.-Aug., 1992, pp. 1237-1266.
"A Comparative Study of GaN Epilayers Grown on Sapphire and SiC Substrates by Plasma-Assisted Molecular-Beam Epitaxy", by M. E. Lin et al., Applied Physics Letters, vol. 62 (26), 28 Jun. 1993, pp. 3479-3481.
"InGaN/AlGaN Double-Heterostructure Blue LEDs", by S. Nakamura, Materials Research Society Symposium Proceedings, vol. 339, 1994, pp. 173-178.
"Structural Classification of RAO.sub.3 (MO).sub.n Compounds (R=Sc, In, Y, or Lanthanides; A=Fe(III), Ga, Cr, or Al; M=Divalent Cation; N=1-11)", by N. Kimizuka et al., Journal of Solid State Chemistry, vol. 78, pp. 1989, pp. 98-107.
"Homologous Compounds, InFeO.sub.3 (ZnO).sub.m (m=1-9)", by N. Kimizuka et al., Journal of Solid State Chemistry, vol. 74, 1988, pp. 98-109.
"Structures of LuFeO.sub.3 (ZnO).sub.3 (m=1,4,5and6)", by M. Isobe et al., Acta Crystallographica Section C, 1994, pp. 332-336.
"Parameters for in situ Growth of High T.sub.c Superconducting Thin Films Using an Oxygen Plasma Source", by R. J. Spah et al., Applied Physics Letters, vol. 53, 1 Aug. 1988, pp. 441-443.
"Ion Milling and Reactive Ion Etching of III-V Nitrides", by S. J. Pearton, Materials Research Society Symposium Proceedings, vol. 339, 1994, pp. 179-184.
Brandle, Jr. Charles D.
Buchanan Denis N.
Hartford, Jr. Elliot H.
Hellman Eric S.
Schneemeyer Lynn F.
AT&T Corp.
Larkins William D.
Pacher Eugen E.
LandOfFree
Article comprising heteroepitaxial III-V nitride semiconductor m does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Article comprising heteroepitaxial III-V nitride semiconductor m, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Article comprising heteroepitaxial III-V nitride semiconductor m will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2190979