Pulse or digital communications – Spread spectrum – Direct sequence
Reexamination Certificate
1999-02-26
2002-12-10
Deppe, Betsy L. (Department: 2734)
Pulse or digital communications
Spread spectrum
Direct sequence
C375S148000, C375S347000, C370S342000, C342S378000
Reexamination Certificate
active
06493379
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an arrival direction estimation method using an array antenna for estimating an arrival direction of a desired signal. The present invention further relates to a DS-CDMA receiver unit in a Direct Sequence Code Division Multiple Access (DS-CDMA) system.
In a base station of a DS-CDMA communication system, signal reception is performed by utilizing an array antenna. Further, an arrival direction of a desired signal is estimated from signals received from the array antenna. By transmitting and receiving in a beam directed in the estimated arrival direction, it is possible to reduce both interference and required transmission power due to an increase in antenna gain. Therefore, it is desirable that the arrival direction of the desired signal is estimated accurately.
FIG. 7
 is a diagram showing a receiver unit of a base station using an array antenna. In particular, 
FIG. 7
 shows array antenna elements 
71
-
0
 through 
71
-(M−1) forming a receiving antenna, reception processors 
72
-
0
 to 
72
-(K−1), despreading units 
73
-
0
 to 
73
-(M−1), beam forming unit 
74
, a channel receiver 
75
, an arrival direction estimation unit 
76
 and a beam former 
77
.
Received signals r
(0) 
to r
(M−1) 
from the array antenna elements 
71
-
0
 to 
71
-(M−1) are input to the reception processors 
72
-
0
 through 
72
-(K−1) corresponding to the different channels. In addition, the reception processor 
72
-
0
 carries out a despreading process with respect to the received signals by the despreading units 
73
-
0
 to 
73
-(M−1), which are input with a spreading code C
0
. The despreading units 
73
-
0
 to 
73
-(M−1) provide despread output signals x
(o) 
to x
(M−1) 
to the arrival direction estimation unit 
76
 and the beam former 
77
 of the beam forming unit 
74
. The arrival direction estimation unit 
76
 estimates an arrival direction of a desired signal based on a cross-correlation function among the received signals received by adjacent antenna elements.
The beam former 
77
 multiplies a weighting coefficient obtained by estimating the arrival direction by the arrival direction estimation unit 
76
 to the despreading output signals x
(0) 
through x
(M−1)
. Further, the beam former 
77
 then combines the products to provide an output signal to the channel receiver 
75
.Therefore, received data of the kth channel is re-generated by the reception processors 
72
-
0
 to 
72
-(K−1) corresponding to channels 
0
 through K−1.
FIG. 8
 is a diagram showing a conventional beam forming unit 
74
 including the arrival direction estimation unit 
76
. In particular, 
FIG. 8
 shows the beam forming unit 
74
 including an arrival direction estimation unit 
76
 and a beam former 
77
 having multipliers 
78
-
0
 to 
78
-
3
 and an adder 
79
.
Received signals x
(0)
(n) to x
(3)
(n) from the antenna elements 
71
-
0
 to 
71
-
3
 (refer to 
FIG. 7
) are input to the arrival direction estimation unit 
76
 and the beam former 
77
. The arrival direction estimation unit 
76
 outputs to the beam former 
77
 weighting coefficients a
0
 to a
3
 obtained by the estimation of the arrival direction of the desired signal. The weighting coefficients a
0
 to a
3
 are respectively input to the multipliers 
78
-
0
 to 
78
-
3
 of the beam former 
77
 to be multiplied with signals x
(0)
(n) to x
(3)
(n) and then coherently summed by the adder 
79
. An output signal y(n) of the adder 
79
 is then input to the channel receiver 
75
 (refer to FIG. 
7
).
FIG. 9
 is a diagram showing a conventional arrival direction estimation unit. In particular, 
FIG. 9
 shows an arrival direction estimation unit 
76
 including correlation calculators 
81
-
0
 through 
81
-
2
, an adder 
82
, and an array weighting coefficient calculator 
83
. A correlation calculator 
81
 is shown in the lower part of 
FIG. 9
, wherein each of the correlation calculators 
81
-
0
 to 
81
-
2
 include a multiplier 
84
 and an averaging filter 
85
. Further, received signals x
(m)
(n) and x
(m+1)
(n) from mth and (m+1)th adjacent antenna elements are input to the multiplier 
84
. In this case, one of the received signals is a complex conjugate (indicated by *), and a complex conjugate product between the received signals from the adjacent antenna elements (cross-correlation function of the zero lag) is obtained. A temporal average is also performed by the averaging filter 
85
 so that a cross-correlation function R
(m) 
is output.
A received signal r
(m) 
(t) from a mth antenna element at a time t satisfying (n−1)T≦t<nT is described by the following formula (1), where ø
i
(m) 
for I=0 to N−1 in formula (1) is described by formula (2), N denotes a number of users, A
i 
denotes a received amplitude of an ith user signal, c
i 
(t) denotes a spreading code of the ith user, &tgr;
i 
denotes a relative delay of the ith user, b
i 
denotes an ith user transmission symbol, d denotes a distance between the antenna elements, &thgr;
i 
denotes an arrival angle of the ith user signal, N
(m)
(t) denotes a noise signal, T denotes a symbol length, and a multipath is not taken into consideration for the sake of convenience. 
r
(
m
)
⁢
 
⁢
(
t
)
=
∑
i
=
0
N
-
1
⁢
 
⁢
A
i
⁢
 
⁢
c
i
⁢
 
⁢
(
t
-
τ
I
)
⁢
 
⁢
b
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
+
N
(
m
)
⁢
 
⁢
(
t
)
(
1
)
φ
i
(
m
)
=
2
⁢
 
⁢
π
⁢
 
⁢
md
⁢
 
⁢
sin
⁢
 
⁢
θ
i
(
2
)
A despreading output signal x
(k)
(m)
(n) which is obtained by subjecting the received signal r
(m) 
(t) from the mth antenna element to a despreading process by the spreading code c
(k) 
(t) of the kth user is described by the following formula (3), where w
ij
(n) in the formula (3) is described by the formula (4). 
x
k
(
m
)
⁢
 
⁢
(
n
)
=
 
⁢
∫
(
n
-
1
)
⁢
 
⁢
T
n
⁢
 
⁢
T
⁢
r
(
m
)
⁢
 
⁢
(
t
)
⁢
 
⁢
c
k
*
(
t
-
τ
k
)
⁢
 
⁢
ⅆ
t
=
 
⁢
A
k
⁢
 
⁢
b
k
⁢
 
⁢
(
n
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
+
 
⁢
∫
(
n
-
1
)
⁢
 
⁢
T
n
⁢
 
⁢
T
⁢
[
∑
i
=
0
i
≠
k
N
-
1
⁢
 
⁢
A
i
⁢
 
⁢
c
i
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
c
k
*
(
t
-
τ
k
)
⁢
 
⁢
b
i
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
]
⁢
ⅆ
t
+
 
⁢
N
(
m
)
⁢
 
⁢
(
n
)
=
 
⁢
A
k
⁢
 
⁢
b
k
⁢
 
⁢
(
n
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
+
 
⁢
∑
i
=
0
i
≠
k
N
-
1
⁢
[
∫
(
n
-
1
)
⁢
 
⁢
T
n
⁢
 
⁢
T
⁢
c
i
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
c
k
*
(
t
-
τ
k
)
⁢
 
⁢
b
i
⁢
 
⁢
(
t
-
τ
i
)
⁢
ⅆ
t
⁢
 
]
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
+
 
⁢
N
(
m
)
⁢
 
⁢
(
n
)
≅
 
⁢
A
k
⁢
 
⁢
b
k
⁢
 
⁢
(
n
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
(
m
)
)
+
∑
i
=
0
i
≠
k
N
-
1
⁢
 
⁢
[
A
i
⁢
 
⁢
w
ij
⁢
 
⁢
(
n
)
⁢
 
⁢
exp
⁢
 
⁢
(
-
j
⁢
 
⁢
φ
i
(
m
)
)
]
+
N
(
m
)
⁢
 
⁢
(
n
)
(
3
)
w
ij
⁢
 
⁢
(
n
)
≡
 
⁢
∫
(
n
-
1
)
⁢
 
⁢
T
n
⁢
 
⁢
T
⁢
c
I
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
c
k
*
(
t
-
τ
k
)
⁢
 
⁢
bi
⁢
 
⁢
(
t
-
τ
i
)
⁢
 
⁢
ⅆ
t
⁢
 
(
4
)
In addition, the correlation calculator 
81
 of 
FIG. 9
 calculates a correlation R
k
(m) 
between the received symbol x
(m)
(n) of the mth antenna element and the received s
Kobayakawa Shuji
Tanaka Yoshinori
Tsutsui Masafumi
Deppe Betsy L.
Fujitsu Limited
Katten Muchin Zavis & Rosenman
LandOfFree
Arrival direction estimation method using an array antenna... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Arrival direction estimation method using an array antenna..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arrival direction estimation method using an array antenna... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2996991