Array fabrication

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C436S518000, C436S527000, C530S334000, C536S023100

Reexamination Certificate

active

06613893

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to arrays, particularly polynucleotide arrays such as DNA arrays, which are useful in diagnostic, screening, gene expression analysis, and other applications.
BACKGROUND OF THE INVENTION
Polynucleotide arrays (such as DNA or RNA arrays), are known and are used, for example, as diagnostic or screening tools. Such arrays include regions of usually different sequence polynucleotides arranged in a predetermined configuration on a substrate. These regions (sometimes referenced as “features”) are positioned at respective locations (“addresses”) on the substrate. The arrays, when exposed to a sample, will exhibit an observed binding pattern. This binding pattern can be detected upon interrogating the array. For example all polynucleotide targets (for example, DNA) in the sample can be labeled with a suitable label (such as a fluorescent compound), and the fluorescence pattern on the array accurately observed following exposure to the sample. Assuming that the different sequence polynucleotides were correctly deposited in accordance with the predetermined configuration, then the observed binding pattern will be indicative of the presence and/or concentration of one or more polynucleotide components of the sample.
Biopolymer arrays can be fabricated by depositing previously obtained biopolymers (such as from synthesis or natural sources) onto a substrate, or by in situ synthesis methods. Methods of depositing obtained biopolymers include dispensing droplets to a substrate from dispensers such as pin or capillaries (such as described in U.S. Pat. No. 5,807,522) or such as pulse jets (such as a piezoelectric inkjet head, as described in PCT publications WO 95/25116 and WO 98/41531, and elsewhere). For in situ fabrication methods, multiple different reagent droplets are deposited from drop dispensers at a given target location in order to form the final feature (hence a probe of the feature is synthesized on the array substrate). The in situ fabrication methods include those described in U.S. Pat. No. 5,449,754 for synthesizing peptide arrays, and described in WO 98/41531 and the references cited therein for polynucleotides. The in situ method for fabricating a polynucleotide array typically follows, at each of the multiple different addresses at which features are to be formed, the same conventional iterative sequence used in forming polynucleotides from nucleoside reagents on a support by means of known chemistry. This iterative sequence is as follows: (a) coupling a selected nucleoside through a phosphite linkage to a functionalized support in the first iteration, or a nucleoside bound to the substrate (i.e. the nucleoside-modified substrate) in subsequent iterations; (b) optionally, but preferably, blocking unreacted hydroxyl groups on the substrate bound nucleoside; (c) oxidizing the phosphite linkage of step (a) to form a phosphate linkage; and (d) removing the protecting group (“deprotection”) from the now substrate bound nucleoside coupled in step (a), to generate a reactive site for the next cycle of these steps. The functionalized support (in the first cycle) or deprotected coupled nucleoside (in subsequent cycles) provides a substrate bound moiety with a linking group for forming the phosphite linkage with a next nucleoside to be coupled in step (a). Final deprotection of nucleoside bases can be accomplished using alkaline conditions such as ammonium hydroxide, in a known manner.
The foregoing chemistry of the synthesis of polynucleotides is described in detail, for example, in Caruthers,
Science
230: 281-285, 1985; Itakura et al.,
Ann. Rev. Biochem
. 53: 323-356; Hunkapillar et al.,
Nature
310: 105-110, 1984; and in “Synthesis of Oligonucleotide Derivatives in Design and Targeted Reaction of Oligonucleotide Derivatives”, CRC Press, Boca Raton, Fla., pages 100 et seq., U.S. Pat. No. 4,458,066, U.S. Pat. No. 4,500,707, U.S. Pat. No. 5,153,319, U.S. Pat. No. 5,869,643, EP 0294196, and elsewhere
In array fabrication, the quantities of polynucleotide available, whether by deposition of previously obtained polynucleotides or by in situ synthesis, are usually very small and expensive. Additionally, sample quantities available for testing are usually also very small and it is therefore desirable to simultaneously test the same sample against a large number of different probes on an array. These conditions require use of arrays with large numbers of very small, closely spaced features. It is important in such arrays that features actually be present, that they are put down accurately in the desired target pattern, are of the correct size, and that the DNA is uniformly coated within the feature. Failure to meet such quality requirements can have serious consequences to diagnostic, screening, gene expression analysis or other purposes for which the array is being used.
However, in order to make arrays at a reasonable cost per array, it is also important that large numbers of arrays be fabricated in a short time. When drops are dispensed to form the arrays, this typically involves dispensing drops from a number of dispensers in co-ordination with scanning the dispensers in some pattern over a substrate (with one or more dispenser re-loadings, as desired). For example, drops for a portion of each array can be dispensed, the dispensers relocated, drops for the same portion of another array dispensed, and the process repeated followed by re-loading of the dispensers and repeating the foregoing sequence for another portion of all the arrays. However, such a pattern requires a large number of movements and hence a relatively long time to complete.
It would be desirable then, to provide a means for fabricating multiple arrays on a substrate while keeping the movement pattern of the multiple dispensers relatively simple.
SUMMARY OF THE INVENTION
The present invention provides in one aspect, a method of fabricating multiple arrays arranged successively in a first direction on a substrate. Each such array has multiple feature sets within the array which are also arranged successively in the first direction. The method uses a head system is used which has multiple successive sets of dispensers (for example, pulse jets such as piezoelectric or thermoelectric jets). In the method, the head system is advanced in the first direction over the substrate. Drop sets are dispensed from successive dispenser sets for each array in co-ordination with such movement, such that each drop set for multiple arrays are dispensed for each array.
In one aspect of the method, drop sets are dispensed from dispenser sets in an order the reverse of that from which the dispenser sets pass over a given location on the substrate as the head system advances in the first direction. In this aspect, each dispenser set deposits a drop set at a distance ahead of (as measured in the first direction) a drop set deposited by a preceding dispenser set which is less than the distance to the successive drop dispenser set which deposits the next drop set. Thus, while a given dispenser set is depositing drops for one feature set of an array, the dispenser sets which will deposit drops for successive feature sets of the same array have still not passed over the one feature set position of the same array (that is, they are still “behind” the given dispenser set in relation to the direction of head advancement).
The arrays fabricated may have a distance between adjacent sets of features within the arrays, which is less than the distance between adjacent sets of dispensers. In fact, in one aspect of the present invention, arrays are fabricated by advancing and dispensing from the previously described head system, to obtain arrays with corresponding feature set spacing (for example, first feature set spacing) between adjacent arrays which is less than the total spacing (as measured in the direction of head advancement) of the dispenser sets which formed the arrays. Furthermore, the sets of features may extend in a direction transverse to the first direction. In this case, the method may additi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Array fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Array fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Array fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3091711

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.