192 clutches and power-stop control – Vortex-flow drive and clutch
Reexamination Certificate
2000-04-24
2002-04-02
Lorence, Richard M. (Department: 3681)
192 clutches and power-stop control
Vortex-flow drive and clutch
C192S003280, C464S098000, C403S015000
Reexamination Certificate
active
06364080
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an arrangement for the rotationally fixed connection of a hydrodynamic coupling device, in particular a torque converter or a hydraulic clutch, to a drive component, in particular a drive shaft.
2. Discussion of the Prior Art
European reference EP 0,610,979 B1 has disclosed an arrangement of this nature, in which a disk-like component is connected in a rotationally fixed manner to the drive component, which forms a drive shaft. A so-called flexiplate is connected to the torque converter in a rotationally fixed manner, and in the radially outer area the flexiplate and the disk-like component are connected to one another by means of a clamping ring. An arrangement of this nature is relatively expensive to produce. To release and produce the connection, the clamping ring has to be released or secured in a suitable manner, and there is a risk of the arrangement functioning incorrectly if the attachment using the clamping ring is excessively strong or insufficiently strong.
Furthermore, it is known to attach securing blocks to a converter casing of the torque converter, and for a flexiplate to be screwed onto the securing blocks radially on the outside, which flexiplate is in turn screwed onto the drive shaft radially on the inside. An attachment device of this nature also requires a relatively complex fitting operation, since all the screws which are used to screw the flexiplate onto the torque converter have to be tightened or loosened.
SUMMARY OF THE INVENTION
Therefore, the object of the present invention is to provide an arrangement for the rotationally fixed connection of a hydrodynamic coupling device to a drive component. The invention further relates to a method for producing a rotationally fixed connection of this nature, by means of which the connection can be produced in a simple and reliably functioning manner.
According to the invention, this object is achieved by means of an arrangement for the rotationally fixed connection of a hydrodynamic coupling device, in particular a torque converter or a hydraulic clutch, to a drive component, in particular a drive shaft. The arrangement comprises a first torque-transmission engagement formation, which is connected in a rotationally fixed manner to the drive component, and a second torque-transmission engagement formation, which is connected in a rotationally fixed manner to the hydrodynamic coupling device and is in or can be brought into torque-transmitting engagement with the first torque-transmission engagement formation as a result of these formations being moved toward one another substantially in the direction of an axis of rotation. The invention further has a preloading device which preloads the hydrodynamic coupling device with respect to the drive component substantially in the direction of the axis of rotation. The first and second torque-transmission engagement formations are brought into or held in torque-transmitting engagement with one another by the preloading force generated by the preloading device.
The arrangement according to the invention comprises two essential aspects: firstly, the two engagement formations create a torque-transmitting coupling, and secondly the preloading force which is generated ensures that the two engagement formations are held reliably in engagement during operation and also when at a standstill. It is therefore not necessary to tighten a large number of screws or to pull on an attachment ring in a defined manner in order to produce the connection and maintain this connection, as is the case in the prior art.
By way of example, it is possible for the first and second torque-transmission engagement formations each to comprise a toothing which is open axially toward the other respective torque-transmission engagement formation in the direction of the axis of rotation.
In order for it to be possible to generate the preloading force in a simple manner, it is proposed for the preloading device to act between a projection, which protrudes from the hydrodynamic coupling device in the direction of the axis of rotation, and the drive component.
A particularly simple and reliably operating structure can be obtained if the preloading device comprises a first support element on the drive component and a second support element on the projection. A preloading spring arrangement acts between the first and second support elements.
In this case, it is preferable for the second support element to be axially fixed to the projection or for the first support element to be axially fixed to the drive component and to be held in an axially movable but rotationally fixed manner on the projection. In order for it to be possible to produce the interaction between the preloading device and the drive component in a simple and reliable manner, it is proposed that the first support element is or can be connected to the drive component in an axially fixed manner by means of threaded engagement.
By way of example, it is possible for the first support element to have an external screw thread formation which is in or can be brought into engagement with an internal screw thread formation provided on the drive component.
In the arrangement according to the invention, when producing the connection between the hydrodynamic coupling device, on the one hand, and the drive component, on the other hand, it is expedient to ensure firstly that the preloading force is generated in a reliable manner and then that the rotationally fixed coupling is generated. For this purpose, the arrangement according to the invention preferably comprises an opposing force device which is able to generate an opposing force which is directed substantially oppositely to the preloading force generated by the preloading device. The opposing force device generates the opposing force in the event of the hydrodynamic coupling device moving onto the drive component in the axial direction, until the preloading device has moved into a fitted limit position, and then ceases to generate the opposing force, in order for the first and second engagement formations to be brought into engagement with one another by the preloading force generated by the preloading device.
By way of example, the opposing force device may be arranged on a device which bears the drive component, preferably on an engine block. Furthermore, it is possible for the opposing force device to be arranged on the coupling device or a component which is connected thereto in a rotationally fixed manner.
The generation of the opposing force by the opposing force device may, for example, be ended by reducing the axial length of this device. This can be achieved by altering the pressure of a fluid in the opposing force device.
The present invention furthermore relates to a subassembly, comprising a hydrodynamic coupling device, in particular a torque converter or a hydraulic clutch, having a coupling projection. A preloading device is coupled to the coupling projection, which preloading device comprises a coupling element which can move axially but is rotationally fixed on the coupling projection, is preloaded into a predetermined position with respect to the coupling projection by a preloading spring arrangement and is designed for axially and rotationally fixed coupling to a drive component. An engagement formation is also provided on the hydrodynamic coupling device, which engagement formation can be brought into torque-transmitting engagement with a corresponding engagement formation on the drive component.
The present invention furthermore relates to a method for the rotationally fixed connection of a hydrodynamic coupling device, in particular a torque converter or a hydraulic clutch, to a drive component comprising the following steps:
a) moving an engagement formation which is provided on the hydrodynamic coupling device onto an engagement formation which is provided on the drive component;
b) generating an opposing force which counteracts the engagement between the engagement formations;
c) generati
Sudau Jörg
Wack Erwin
Cohen & Pontani, Lieberman & Pavane
Lorence Richard M.
Mannesmann Sachs AG
LandOfFree
Arrangement for the rotationally fixed connection of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Arrangement for the rotationally fixed connection of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arrangement for the rotationally fixed connection of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2872133