Arrangement for determining link latency for maintaining...

Multiplex communications – Data flow congestion prevention or control – Flow control of data transmission through a network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S229000

Reexamination Certificate

active

06222825

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to network interfacing and more particularly, to methods and systems controlling network data traffic on media of full-duplex networks.
BACKGROUND ART
Local area networks use a network cable or other media to link stations on the network. Each local area network architecture uses media access control (MAC) enabling network interface cards at each station to share access to the media.
A full duplex environment has been proposed for Ethernet networks, referred to as IEEE 802.3x, Full Duplex with Flow Control-Working Draft (0.3). The full duplex environment provides a two-way, point-to-point communication link between two network elements, for example a network station and a switched hub. Hence, two or more stations can simultaneously transmit and receive Ethernet data packets between each other via a switched hub without collisions.
Full-duplex operation does not require that transmitters defer, nor that they monitor or react to receive activity, as there is no contention for a shared medium in this mode. Full-duplex operation can be used when the physical medium is capable of supporting simultaneous reception and transmission (fibre or copper), there are exactly two stations on the link and both stations have been configured to use full duplex links. The most common configuration envisioned for full-duplex operation consists of a multiport bridge (a switch) with dedicated point-to-point connections to several end-stations.
Network congestion occurs if a receiving network element is unable to receive data at a rate greater than or equal to the transmission rate of the transmitting element. For example, traffic in a client-server environment is dominated by client requests followed by a burst of frames from the server to the requesting client. Although the full duplex environment enables the server to transmit packets while receiving requests from other clients, only a limited number of client requests can be output to the server from the switched hub at the assigned switching port. If the number of client requests exceeds the capacity of the server's port, some of the data packets will be lost. Alternatively, a client having limited buffer space may be unable to keep up with the transmission rate of the server, resulting in lost packets.
Flow control has been proposed to reduce network congestion, where a sending station temporarily suspends transmission of data packets. A proposed flow control arrangement for a full duplex environment, referred to as IEEE 802.3x[2], specifies generation of a flow control message, for example a PAUSE frame. A transmitting station that receives the PAUSE frame enters a pause state in which no frames are sent on the network for a time interval specified in the PAUSE frame. The PAUSE frame relieves congestion at the receiver. For example, in a switch with several 10 Mbps or 100 Mbps full-duplex ports, it is possible for the traffic from all the ports to overload the switch. In these periods, the switch will transmit PAUSE frames to those 10 Mbps or 100 Mbps ports that the switch believes are the source of the congestion. These stations will stop transmitting frames for the period specified by the PAUSE frame, thus relieving congestion at the switch.
The round-trip link delay between the switch and the end station has importance in times of congestion. If the link delay between the switch and the end station is long, and the bandwidth of the link is high, the transmission of a PAUSE frame after congestion is detected will not have effect until at least one round-trip link delay's worth of data has entered the switch. Similarly, when congestion is relieved and the switch transmits a PAUSE frame with value 0 (allowing station transmission), it will be at least one round-trip delay before data flows into the switch again.
SUMMARY OF THE INVENTION
There is a need for an arrangement that determines when to initiate flow control by a network element, taking into account the latency of a link, i.e., the round-trip delay of a point-to-point full-duplex connection.
These and other needs are met by the present invention which provides a method of determining a link latency between stations on a network, in which a physical layer of a remote station is placed into a remote loopback configuration so that all data received from the network is transmitted back onto the network. A specified data pattern is transmitted from a local station to the remote station. At the local station the specified data pattern that has been transmitted back onto the network by the remote station is detected. The link latency between the local station and the remote station is then determined as a function of the time elapsed between the transmitting of the specified data pattern from the local station and the detecting of the specified data pattern at the local station.
The earlier stated needs are also met by another embodiment of the present invention which provides a method of controlling a remote station on a network, in which a remote loopback control signal is transmitted from a local station to a remote station. At the remote station, the reception of the remote loopback control signal is detected. The remote station is configured in response to the reception of the remote loopback control signal such that all data received from the network is transmitted back onto the network.
The earlier stated needs are also met by a still further embodiment of the present invention which provides a method of controlling congestion at a local station in a network, comprising the steps of placing a physical layer of a remote station into a remote loopback configuration such that all data received from the network is transmitted back onto the network. A specified data pattern is transmitted from a local station to the remote station. The specified data pattern that has been transmitted back onto the network by the remote stations detected at the local station. The link latency between the local station and the remote station is then determined as a function of the time elapsed between the transmitting of the specified data pattern from the local station and the detecting of the specified data pattern at the local station. A congestion relieving signal is then transmitted from the local station to the remote station as a function of the determined link latency.
The earlier stated needs are also met by another embodiment of the present invention which provides a physical layer device connecting a station to a network, comprising a transmit side which transmits data from the station onto the network, a receive side which receives data from the network and provides the data to the station, and a configurable internal routing arrangement remotely controllable in response to a remote loopback configuration signal received from the network to couple the receive side to the transmit side such that all data received from the network is transmitted directly back onto the network.
The foregoing and other features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.


REFERENCES:
patent: 4247934 (1981-01-01), Parras
patent: 4764980 (1988-08-01), Sakaguchi
patent: 5121382 (1992-06-01), Yang
patent: 5550802 (1996-08-01), Worsley
patent: 5610903 (1997-03-01), Crayford
patent: 5673254 (1997-09-01), Crayford
patent: 5726976 (1998-03-01), Thompson
patent: 5784559 (1998-07-01), Frazier
patent: 5805597 (1998-09-01), Edem
patent: 5825755 (1998-10-01), Thompson
patent: 5905870 (1999-05-01), Mangin
patent: 5995488 (1999-11-01), Kalkunte
“Am79C971 PCnet-FAST Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus”, Preliminary Data Sheet Publication #20550, Rev. B, Issued May 1996 by Advanced Micro Devices, Inc.
Breyer et al., “Switched and Fast Ethernet: How It Works and How to Use It”, Ziff-Davis Press, Emeryville, CA (1995), pp. 60-70.
Johnson, “Fast Ethernet: Dawn of a New Net

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Arrangement for determining link latency for maintaining... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Arrangement for determining link latency for maintaining..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arrangement for determining link latency for maintaining... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.