Arrangement and method for generating a plurality of optical...

Optical: systems and elements – Single channel simultaneously to or from plural channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S618000, C359S741000, C359S641000, C359S822000

Reexamination Certificate

active

06590712

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority of German Application Serial No. 101 12 024.9, filed Mar. 9, 2001, the complete disclosure of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
a) Field of the Invention
The invention is directed to an arrangement and method for generating a plurality of optical axes which are oriented in a defined manner relative to one another in which the directions of the optical axes are defined by the reflection angles of a light bundle at plane mirror surfaces arranged in different ways. It is suitable particularly for the production of laser plummets with a plurality of orthogonal axes and similar measurement instruments for the construction industry, but also offers many possible applications for aligning beam paths to be divided in a desired way in optical precision measurement instruments.
b) Description of the Related Art
Table systems and frame systems are known generally from the prior art for mirror adjustments. These table and frame systems which serve as supports for mirror surfaces are actuated mechanically by adjustment screws or piezo-electrically when the desired beam path of a light bundle is directed for the first time (or after repeated readjustments) to a target point by switching on the light sources being used. This procedure is likewise common in laser plummets for the construction industry, wherein the type of beam splitting and beam orientation is solved in different ways.
U.S. Pat. No. 4,912,851 discloses a level/plumb indicator in which the exact 90-degree orientation of a horizontal exit beam relative to the original vertical direction of the collimated laser beam is achieved by a two-mirror orthogonal reflector (penta prism). The vertical direction is generated by swiveling the reflector out of the laser beam. This solution has the decisive disadvantage that the two orthogonal exit beams are only available alternatively.
A similar portable laser device for orientation purposes is described in U.S. Pat. No. 5,144,487 in which (up to five) exit beams can be provided simultaneously in vertical, horizontal and orthogonal direction in that collimated light from a laser diode is split into a corresponding number of exit beams through an optical system. A projection unit comprising a laser diode, collimator and optical system is suspended in pendulum fashion such that at least one beam is oriented horizontally and other beams are oriented vertically or at right angles thereto. For purposes of beam splitting, the optical system contains at least one partially reflecting mirror which must be exactly adjusted, wherein small indicators are provided by the manner in which the partially reflecting mirror is oriented in an exactly reproducible manner, requiring a time-consuming final adjustment with reference to the target marks.
Another solution to the set of problems in multiple-axis laser sighting instruments is known from U.S. Pat. No. 6,005,716. In this case, the elliptic beam shape typical of laser diodes is deliberately used to direct the collimated elliptic light bundle in three adjacent circular bundles to three mirrors which are arranged directly next to one another in a plane and which are variously inclined by 45° in three different directions, the middle mirror being partially transparent. This results in four orthogonal beam bundles. A fifth beam is added by inserting another partially reflecting mirror in the beam path of the beam reflected at the first partially reflecting mirror and reflects the beam bundle in the opposite direction. The different intensity of the orthogonal bundles resulting from the multiple division of individual beam bundles is disadvantageous. Further, the orientation of the individual mirror surfaces in this solution is also still time-consuming and this patent indicates neither the manner of holding the mirrors nor the procedure for suitable adjustment.
OBJECT AND SUMMARY OF THE INVENTION
It is the primary object of the invention to find a novel possibility for generating a plurality of optical axes oriented in a defined manner relative to one another using plane mirror surfaces which allows desired accurate orientation of the optical axes independent from manufacturing tolerances of the components for holding the mirrors and a simple and stable final adjustment.
According to the invention, in an arrangement for generating a plurality of optical axes oriented in a defined manner relative to one another in which the optical axes are defined by the reflection angles of a light bundle at plane mirror surfaces arranged in different ways, the above-stated object is met in that the plane mirror surfaces are arranged on the section face of spherical segments, wherein every spherical segment always includes a spherical cap and a plane circle face and the axis of symmetry of the spherical segment extended beyond the circle face is a mirror surface normal, in that every spherical segment is embedded with its spherical cap in a recess of a base body, wherein the recess has a center axis, which is essentially adapted to the direction of the mirror surface normal required for the orientation of the optical axis, and an outside surface, and there are contact points between the spherical cap of the spherical segment and the outside surface of the recess, which contact points constitute an invariable pattern of contact points which is not dependent on the orientation of the mirror surface, and in that the spherical segments are rigidly fixed in the recesses of the base body, at least at the contact points, by means of a connection layer, wherein the plane mirror surfaces can be adjusted with the desired degree of accuracy prior to the final fixing of the connection layer corresponding to the optical axes to be aligned.
Every spherical segment is advisably provided with a mirror layer on its plane section face.
In order to limit the reflected light bundle in a defined manner, it is advantageous when the section face is covered by a mirror layer, wherein a sharply defined edge area is provided as a diaphragm. The mirror layer is preferably vapor-deposited on the section face. The edge area provided as diaphragm can be excluded from the vapor deposition or may be coated subsequently in addition. The spherical segments which carry the mirror surfaces are advisably half-spheres for reasons of simple manufacture. However, one-quarter spheres to three-quarter spheres may also be useful, depending on the needed size of the variance range of the angle for orienting the mirror surface.
The recesses for receiving the spherical segments in the base body are conical in one preferred variant; in this case, the invariable pattern of contact points between the outside surface of the conical recess and the spherical cap of an embedded spherical segment is a closed circular line.
It is also possible for the recesses to be shaped as regular pyramids, wherein the invariable pattern of the contact points would ideally be the corner points of an n-angle, when n is the quantity of lateral surfaces of the pyramid. Concretely, however (for reasons of manufacturing tolerances of n-sided pyramid-shaped recesses), the pattern of the contact points is a plane pattern with fewer than n corners, so that actually only the three-sided pyramid is useful for safely preventing tilting movements when orienting the spherical segments in the recess of the pyramid-shaped recesses. The points of contact with the spherical cap of the spherical segment which are located on a surface line of the lateral surfaces of the three-sided pyramid-shaped recess, even when deviating from the ideal shape of a regular pyramid, constitute a virtually equilateral triangle, but in any case a constant triangle representing a definite three-point bearing for the spherical cap.
For every optical axis to be aligned, the base body should advisably have a suitable surface portion for arranging the above-mentioned recess, wherein the surface normal of every such surface portion in the area of the recess should be essenti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Arrangement and method for generating a plurality of optical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Arrangement and method for generating a plurality of optical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arrangement and method for generating a plurality of optical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3012231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.