Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate
Reexamination Certificate
1999-10-20
2001-05-08
Hampton-Hightower, P. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From phenol, phenol ether, or inorganic phenolate
C528S176000, C528S310000, C528S353000, C428S473500
Reexamination Certificate
active
06228972
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a novel aromatic polycarbodiimide and a water repellent sheet made therefrom. More particularly, the present invention relates to an aromatic polycarbodiimide having high heat resistance, low hygroscopicity and a low dielectric constant and to a water repellent sheet made from such an aromatic polycarbodiimide.
2. Description of the Related Art
There have been known aromatic polycarbodiimides produced by polymerizing diphenylmethane diisocyanate (MDI) or tolylene diisocyanate (TDI) as a monomer. These aromatic polycarbodiimides are used as flame resistant films or heat resistant adhesives because of their excellent heat resistance.
From the point of view that these aromatic polycarbodiimide films do not generate a volatile gas or decomposed monomer even when they are exposed to a temperature higher than 400° C., it can be said that these aromatic polycarbodiimide films have acceptable heat resistance. However, they have low moisture resistance, and loses self supporting properties and become fragile when they are heat-treated at 200° C. or more, so that they are not fit for practical use. In addition, they have poor solubility in an organic solvent and low workability.
Further, recently it is required for heat resistant films to have various properties in combination depending on their use. For example, in the case of interlayer insulating films for printed circuit boards or LSIs, low thermal expansion coefficient and low dielectric constant are expected. For components for use in optical communication, in particular cladding materials for use in optical waveguides, low refractive index is expected. Furthermore, to keep the values of physical properties constant, water absorption must be low. When heat resistant films are used as a surface protector for molded articles used under humid atmospheres or as a heat resistant releasing material, it is effective to impart water repellency thereto.
For example, polyimides, which are excellent in heat resistance and they are used widely, have a high water absorption due to the fact that they contain in their molecule many imide groups, which are highly polarized. On the other hand, in the case where they contain fluorine in the molecule, polyimides have a small contact angle, so that no sufficient water repellency can be obtained.
Water repellency can be imparted by various methods, which include methods in which fluorochemical compositions are added, methods in which fluorine atom is introduced in the polymer main chain, etc. As one of the methods in which fluorochemical compositions are added, there has been a report on the use of a carbodiimide compound as an extender (Japanese Patent Application Laid-open No. Hei 8-325220). Here, the carbodiimide compound is used as an extender for fluorochemical compounds in order to reduce costs but it does not exhibit water repellency or oil repellency when used alone.
As the polymer having introduced in the polymer main chain, there has been known polytetrafluoroethylene (PTFE), which however has a somewhat poor processability. Also, there has been known a method in which a substituent containing many trifluoromethyl groups is introduced to one or both ends of polyimide molecule. However, this method is disadvantageous from the viewpoint of costs (Japanese Patent Application Laid-open No. Hei 11-21350).
SUMMARY OF THE INVENTION
The inventors of the present invention have conducted intensive studies on various raw material monomers and aromatic polycarbodiimide to obviate the above defects of the conventional polycarbodiimides. As a result, they have found that the above problems can be solved by a polycarbodiimide having the following new skeleton and accomplished the present invention based on this finding.
1) In a first aspect, the present invention provides an aromatic polycarbodiimide comprising a structure represented by the following formula (I):
wherein n is an integer of 2 to 300, and R represents an organic group.
The polymer, which is a novel polymer compound, has excellent solubility in organic solvents and at the same time very high heat resistance, and also it is excellent in adhesion, low temperature processability and moisture resistance. Furthermore, it can readily be dissolved in organic solvent solutions to give polycarbodiimide solutions, from which water repellent sheet can be produced. The polycarbodiimide has high heat resistance similar to that of polyimides but they have no polar groups in the molecule so that it has low water absorption and gives high water repellency as compared with polyimides.
In relation to the polycarbodiimide of the present invention, reference is made to Japanese Patent Application Laid-open Nos. Hei 2-292316 and Hei 4-279618, which disclose aromatic polycarbodiimides represented by the following formula (II):
wherein R
1
is a lower alkyl group such as a methyl group or a lower alkoxy group such as methoxy group. The polycarbodiimides are poor in durability. Heretofore, no report has been made on polycarbodiimide to which an organic group having a large number of carbon atoms or an organic group containing fluorine atoms is introduced in its side chain through an ether bond.
Other objects and advantages of the present invention will become apparent from the detailed description to follow taken in conjunction with the appended claims.
REFERENCES:
patent: 5650476 (1997-07-01), Amana et al.
patent: 6008311 (1999-12-01), Sakamoto et al.
patent: 2-292316 (1990-03-01), None
patent: 4-279618 (1992-05-01), None
patent: 11-21350 (1999-01-01), None
Angrew, Chem. Internat. Edit., vol. 7, No. 12, pp. 941 (1968).
Fukuoka Takahiro
Hikita Takami
Misumi Sadahito
Mochizuki Amane
Sakamoto Michie
Hampton-Hightower P.
Nitto Denko Corporation
Sughrue Mion Zinn Macpeak & Seas, PLLC
LandOfFree
Aromatic polycarbodiimide and water repellent sheet made... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aromatic polycarbodiimide and water repellent sheet made..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aromatic polycarbodiimide and water repellent sheet made... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2444478