Aromatic compounds

Organic compounds -- part of the class 532-570 series – Organic compounds – Nitriles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S021000, C560S045000, C562S011000, C562S012000, C562S014000, C562S433000, C562S435000, C562S437000, C562S488000

Reexamination Certificate

active

06590118

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel compounds, the use of these compounds as medicaments, the use of these medicaments in the treatment of and/or prevention of diabetes, and especially non-insulin dependent diabetes (NIDDM or Type 2 diabetes) including overnight or meal treatment and treatment or prevention of long-term complications, such as retinopathy, neuropathy, nephropathy, and micro- and macroangiopathy; treatment of hyperglycemia, hyperchloesterolemia, hypertension, hyperinsulinemia, hyperlipidemia, atherosclerosis or ischemia or treatment or prophylaxis of obesity or appetite regulation, pharmaceutical compositions containing these compounds and methods of preparing the compounds.
BACKGROUND OF THE INVENTION
Diabetes is characterized by an impaired glucose metabolism manifesting itself among other things by an elevated blood glucose level in the diabetic patients. Underlying defects lead to a classification of diabetes into two major groups: Type 1 diabetes, or insulin demanding diabetes mellitus (IDDM), which arises when patients lack &bgr;-cells producing insulin in their pancreatic glands, and Type 2 diabetes, or non-insulin dependent diabetes mellitus (NIDDM), which occurs in patients with an impaired &bgr;-cell function besides a range of other abnormalities.
Type 1 diabetic patients are currently treated with insulin, while the majority of Type 2 diabetic patients are treated either with sulphonylureas that stimulate &bgr;-cell function or with agents that enhance the tissue sensitivity of the patients towards insulin or with insulin. Among the agents applied to enhance tissue sensitivity towards insulin metformin is a representative example.
Even though sulphonylureas are widely used in the treatment of NIDDM this therapy is, in most instances, not satisfactory: In a large number of NIDDM patients sulphonylureas do not suffice to normalise blood sugar levels and the patients are, therefore, at high risk for acquiring diabetc complications. Also, many patients gradually lose the ability to respond to treatment with sulphonylureas and are thus gradually forced into insulin treatment. This shift of patients from oral hypoglycaemic agents to insulin therapy is usually ascribed to exhaustion of the &bgr;-cells in NIDDM patients.
In normal subjects as well as in diabetic subjects, the liver produces glucose in order to avoid hypoglycaemia. This glucose production is derived either from the release of glucose from glycogen stores or from gluconeogenesis, which is a de novo intracellular synthesis of glucose. In Type 2 diabetes, however, the regulation of hepatic glucose output is poorly controlled and is increased, and may be doubled after an overnight fast. Moreover, in these patients there exists a strong correlation between the increased fasting plasma glucose levels and the rate of hepatic glucose production (reviewed in R. A. De Fronzo:
Diabetes
37, 667-687 (1988); A. Consoli:
Diabetes Care
15, 430-441 (1992); and J. E. Gerich:
Horm.Metab.Res.
26, 18-21 (1992)). Similarly, hepatic glucose production will be increased in Type 1 diabetes, if the disease is not properly controlled by insulin treatment.
Since existing forms of therapy of diabetes does not lead to sufficient glycaemic control and therefore are unsatisfactory, there is a great demand for novel therapeutic approaches. Since the liver in diabetes is known to have an increased glucose production, compounds inhibiting this activity are highly desirable. Recently, patent applications on inhibitors of the liver specific enzyme, glucose-6-phosphatase, which is necessary for the release of glucose from the liver, have been filed, for example DE-A-4,202,183, DE-A-4,202,184, WO98/40385, WO99/40062, and JP-A-4-58565.
Substituted N-(indole-2-carbonyl)-glycinamides acting as glycogen phosphorylase inhibitors are disclosed in WO96/39384, WO96/39385 and in EP-A-0 846 464. Piperidine and pyrrolidine compounds acting as glycogen phosphorylase inhibitors are disclosed in WO95/24391, WO 97/09040, WO 98/40353, and WO 98/50359.
Atherosclerosis, a disease of the arteries, is recognized to be the leading cause of death in the United States and Western Europe. The pathological sequence leading to atherosclerosis and occlusive heart disease is well known. The earliest stage in this sequence is the formation of “fatty streaks” in the carotid, coronary and cerebral arteries and in the aorta. These lesions are yellow in colour due to the presence of lipid deposits found principally within smooth-muscle cells and in macrophages of the intima layer of the arteries and aorta. Further, it is postulated that most of the chloesterol found within the fatty streaks, in turn, give rise to development of the “fibrous plaque”, which consists of accumulated intimal smooth muscle cells laden with lipid and surrounded by extra-cellular lipid, collagen, elastin and proteoglycans. The cells plus matrix form a fibrous cap that covers a deeper deposit of cell debris and more extracellular lipid. The lipid is primarily free and esterified chloesterol. The fibrous plaque forms slowly, and is likely in time to become calcified and necrotic, advancing to the “complicated lesion” which accounts for the arterial occlusion and tendency toward mural thrombosis and arterial muscle spasm that characterize advanced atherosclerosis.
Epidemiological evidence has firmly established hyperlipidemia as a primary risk factor in causing cardiovascular disease (CVD) due to atherosclerosis. In recent years, leaders of the medical profession have placed renewed emphasis on lowering plasma chloesterol levels, and low density lipoprotein chloesterol in particular, as an essential step in prevention of CVD. The upper limits of “normal” are now known to be significantly lower than heretofore appreciated. As a result, large segments of Western populations are now realized to be at particular high risk. Independent risk factors include glucose intolerance, left ventricular hypertrophy, hypertension, and being of the male sex. Cardiovascular disease is especially prevalent among diabetic subjects, at least in part because of the existence of multiple independent risk factors in this population. Successful treatment of hyperlipidemia in the general population, and in diabetic subjects in particular, is therefore of exceptional medical importance.
Hypertension (or high blood pressure) is a condition, which occurs in the human population as a secondary symptom to various other disorders such as renal artery stenosis, pheochromocytoma, or endocrine disorders. However, hypertension is also evidenced in many patients in whom the causative agent or disorder is unknown. While ushc “essential” hypertension is often associated with disorders such as obesity, diabetes, and hypertriglyceridemia, the relationship between these disorders has not been elucidated. Additionally, many patients display the symptoms of high blood pressure in the complete absence of any other signs of disease or disorder.
It is know that hypertension can directly lead to heart failure, renal failure, and stroke (brain haemorrhaging). These conditions are capable of causing short-term death in a patient. Hypertension can also contribute to the development of atherosclerosis and coronary disease. These conditions gradually weaken a patient and can lead to long-term death.
The exact cause of essential hypertension is unknown, though a number of factors are believed to contribute to the onset of the disease. Among such factors are stress, uncontrolled emotions, unregulated hormone release (the renin, angiotensin aldosterone system), excessive salt and water due to kidney malfunction, wall thickening and hypertrophy of the vasculature resulting in constricted blood vessels and genetic factors.
The treatment of essential hypertension has been undertaken bearing the foregoing factors in mind. Thus a broad range of beta-blockers, vasoconstrictors, angiotensin converting enzyme inhibitors and the like have been developed and marketed as antihypertensives. The treatment of hypertension util

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aromatic compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aromatic compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aromatic compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.