Colloid systems and wetting agents; subcombinations thereof; pro – Compositions containing an agent for breaking ; processes of... – Continuous liquid phase colloid system and discontinuous...
Reexamination Certificate
2002-05-14
2003-11-11
Metzmaier, Daniel S. (Department: 1712)
Colloid systems and wetting agents; subcombinations thereof; pro
Compositions containing an agent for breaking ; processes of...
Continuous liquid phase colloid system and discontinuous...
C516S172000, C516S173000, C516S177000, C516S178000, C516S179000, C528S099000, C528S250000, C525S450000
Reexamination Certificate
active
06646016
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to resins preparable from aromatic compounds by condensation with aldehydes, and to their use for breaking water-oil emulsions, in particular in the production of crude oil.
During its recovery, crude oil is produced as an emulsion with water. Before the crude oil is further processed, these crude oil emulsions must be broken into the oil and water constituents. For this purpose, use is generally made of crude oil breakers. Crude oil breakers are surface-active compounds which are able to effect the required separation of the emulsion constituents within a short time.
Crude oil breakers include alkylphenol aldehyde resins, which are disclosed, for example, in U.S. Pat. No. 4,032,514. These resins are obtainable from the condensation of a p-alkylphenol with an aldehyde, in most cases formaldehyde. The resins are often used in alkoxylated form, as is disclosed, for example, in DE-A-24 45 873. For this, the free phenolic OH groups are reacted with an alkylene oxide.
SUMMARY OF THE INVENTION
However, alkylphenol aldehyde resins have recently become the subject of criticism because of their virtually unavoidable content of free alkylphenols and alkylphenol alkoxylates. According to the current state of knowledge, it cannot be ruled out that alkylphenols and alkylphenol alkoxylates have estrogenic action, which would be a potential threat to the animal kingdom.
The object was therefore to find new crude oil breakers which are at least comparable in activity with the alkylphenol aldehyde resins, but which do not comprise alkylphenols or alkylphenol alkoxylates, and are therefore not suspected of having estrogenic action.
Surprisingly, we have found that certain novel alkylphenol-free aromatic aldehyde resins which have a functional group capable of alkoxylation, but no alkyl radical on the aromatic ring, exhibit excellent action as crude oil breakers and are not suspected of having a hormone-like action.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention thus provides resins obtainable from compounds of the formula 1
in which
X is —OH, —NHR
1
, —COOH or —CONHR
2
, in which
R
1
is H, C
1
-C
30
-alkyl C
2
-C
30
-alkenyl, C
6
-C
18
-aryl, C
7
-C
30
-alkylaryl or —COR
2
R
2
is H, C
1
-C
30
-alkyl, C
2
-C
30
-alkenyl, C
6
-C
18
-aryl, C
7
-C
30
-alkylaryl,
Y is in the ortho, meta or para position relative to X, and is a radical of the formulae 2 to 5
—O—R
3
(2)
in which
R
3
is H, C
1
-C
30
-alkyl, C
2
-C
30
-alkenyl, C
6
-C
18
-aryl, C
7
-C
30
-alkylaryl
R
4
is —OR
3
, —NR
6
R
7
or —R
5
R
5
is C
1
-C
30
-alkyl, C
2
-C
30
-alkenyl, C
6
-C
18
-aryl, C
7
-C
30
-alkylaryl
R
6
has the same meaning as given for R
3
, or is —COR
3
, but is independent of R
3
,
R
7
has the same meaning as given for R
3
, or is —COR
3
, but is independent of R
3
,
where, for the case X, Y=COOH in the ortho position, the corresponding acid anhydride is also included, by the steps, which can be carried out in any order, of
A) reaction with an aldehyde of the formula 6
R
8
—CHO (6),
where R
8
is H, C
1
-C
30
-alkyl, C
2
-C
30
-alkenyl, C
6
-C
18
-aryl, C
7
-C
30
-alkylaryl, and
B) alkoxylation with a C
2
-C
4
-alkylene oxide in molar excess, such that the resulting alkoxylate has a degree of alkoxylation of from 1 to 100 alkylene oxide units per —OH or —NH group,
and the resin has a molecular mass of from 250 to 100,000 units, with the proviso that X and Y are not OH at the same time.
The compounds of the formula (1) are essentially chemically homogeneous compounds which are not used in mixtures with one another. The term “essentially” means here that, for the preparation of the resins according to the invention, compounds of the formula (1) are used in commercially available purity. Proportions of other compounds covered by formula (1) can therefore be present in the resins, it being necessary, in particular, to draw attention to proportions of the two other aromatic substitution isomers in each case which have not been completely removed. The same is true for the aldehyde used for the condensation. This too is essentially to be used as a homogeneous substance, where aldehydes of commercially available purity are used.
The compounds of the formula (1) are preferably compounds from the following groups:
A) derivatives of o-, m- and p-dihydroxybenzene of the formulae
B) o-, m- and p-aminophenols, and their N-alkylated and N-acylated derivatives of the formulae
C) o- and p-hydroxybenzoic acids and their amides or esters of the formulae
D) terephthalic and phthalic acid and their monoesters
E) ethers of amides of o-, p-hydroxybenzoic acid of the formulae
where R
5
and R
5
′ both have the meaning of R
5
, but do not have to be identical.
If one of the radicals R
1
, R
2
, R
3
, R
5
, R
6
or R
7
is an alkenyl or alkyl radical, then its chain length is preferably from 2 to 24, particularly preferably from 4 to 22, especially from 4 to 18, carbon atoms. Alkyl and alkenyl radicals can either be linear or branched.
If one of the radicals R
1
, R
2
, R
3
, R
5
, R
6
or R
7
is an alkylaryl radical, then alkylaryl is preferably a radical bonded via the aromatic ring, whose aromatic ring preferably includes 6 carbon atoms, and which carries, in the o-, m- or p-position relative to the abovementioned bond, an alkyl radical having a chain length of preferably from 1 to 18, particularly preferably from 4 to 16, in particular from 6 to 12, carbon atoms.
In a further preferred embodiment of the invention, the compound of the formula 1 is phthalic anhydride.
If step A is carried out first and then step B, the compounds of the formula 1 are then reacted (condensed) with aldehydes of the formula 6 to give a resin. The aldehydes of the formula 6 are preferably those in which R
8
is H or a C
1
-C
6
-alkyl radical, in particular H or a C
1
-C4-alkyl radical. In a particularly preferred embodiment, R
8
is hydrogen. The condensation can either be acid-catalyzed or base-catalyzed. The resins resulting from the condensation are in this case then alkoxylated with a C
2
-C
4
-alkylene oxide, preferably ethylene oxide or propylene oxide. The alkoxylating agent is used in molar excess. The alkoxylation takes place on the free OH or NH groups of the resulting resin. Alkylene oxide is used in an amount such that the average degree of alkoxylation is between 1 and 100 alkylene oxide units per free OH or NH group. The term “average degree of alkoxylation” here means the average number of alkoxy units which are attached to each free OH or NH group. It is preferably from 1 to 70, in particular from 2 to 50.
Steps A) (condensation) and B) (alkoxylation) are preferably carried out in this order. It is, however, also possible to carry them out in reverse order. In this case, the compounds of the formula 1 are firstly alkoxylated, and then converted into the resin.
The resin obtained after condensation and alkoxylation preferably has a molecular weight of from 500 to 50,000 units, in particular from 1000 to 10,000 units.
Preferred resins which are obtainable by the described process have the following 20 structures:
X
1
and Y
1
are radicals X and Y optionally alkoxylated with from 1 to 100 alkoxy units. X
1
or Y
1
can also be identical to X or Y, provided X or Y cannot be alkoxyaated in the individual case. Thus, for example, X
1
can be
—O—(AO)
k
—H
—NR
1
—(AO)
k
—H
—CO—(AO)
k
—H
—CO—NR
1
—(AO)
k
—H
In which AO is the alkylene oxide unit, and k is the degree of alkoxylation.
The bridging of the aromatic rings via the carbon atom carrying the radical R
8
can join onto any of the free positions of the aromatic rings. n is the degree of condensation of the resin. n is preferably a number from 2 to 100, in particular from 3 to 50, particularly preferably from 4 to 30, especially from 4 to 10.
The invention further provides for the use of resins for breaking oil-water emulsions, where the resins are obtainable from compounds of the formula 1
in which
X is —OH, —NHR
1
, —COOH or —CONHR
2
, in which
R
1
is H, C
1
-C
30
-alkyl C
2
Baumgärtner Wolfram
Feustel Michael
Holtrup Frank
Wasmund Elisabeth
Clariant GmbH
Jackson Susan S.
Metzmaier Daniel S.
Silverman Richard P.
LandOfFree
Aromatic aldehyde resins and their use as emulsion breakers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aromatic aldehyde resins and their use as emulsion breakers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aromatic aldehyde resins and their use as emulsion breakers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185044