ARF-P19, a novel regulator of the mammalian cell cycle

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S300000, C530S324000, C530S325000, C530S326000, C530S327000, C530S328000, C530S329000, C530S330000, C530S350000

Reexamination Certificate

active

06407062

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to cancer detection and treatment and, more particularly, to a novel protein called “p19
ARF
protein,” “p19
ARF
”, “ARF-p19” or simply “ARF” that is involved in regulation of the eukaryotic cell cycle. Protein ARF-p19 is encoded by a nucleic acid derived from the gene, INK4A, which also encodes an inhibitor of D-type cyclin-dependent kinases called “p16
InK4a
protein,” “p16
InK4a
” or simply “InK4a-p16.”
Transcripts encoding InK4a-p16 originate from a first promoter, E1a; the present invention is based on the observation that some INK4A transcripts initiate from a second promoter, E1b, and contain an Alternative Reading Frame, ARF, which overlaps the InK4a-p16 reading frame to some degree. ARF transcripts direct the production of a protein that has ARF-p19 amino acid sequences instead of the previously-known InK4a-p16 sequences. Like InK4a-p16, ARF-p19 regulates the eukaryotic cell cycle. When overexpressed, ARF-p19 inhibits cells from proceeding past both the G1 and G2 phases of the cell cycle. However, the mechanism(s) by which ARF-p19 acts are unlike those of InK4a-p16, which acts by directly and specifically interacting with CDK (cyclin D-dependent kinase) proteins and thus preventing CDK-cyclin D interactions.
In addition to (1) ARF-p19 proteins, this invention further relates to (2) nucleic acids that encode ARF-p19 isolated from mice, humans and other mammals; (3) antibodies that specifically bind ARF-p19 protein or polypeptides derived therefrom; (4) methods for detecting one or more nucleic acids encoding ARF-p19, or alterations in such nucleic acids; (5) methods for producing ARF-p19 proteins using nucleic acids that encode ARF-p19; (6) purified ARF-p19 proteins, or fusion proteins derived from the joining of an ARF-p19 polypeptide sequence with a second polypeptide sequence; (7) methods of treating cancer using purified ARF-p19 proteins or fusion proteins derived therefrom; (8) methods of inducing cell cycle arrest using ARF-p19 proteins or nucleic acids encoding ARF-p19 proteins; (9) methods for detecting ARF-p19 proteins using antibodies that specifically bind ARF-p19 proteins; (10) methods of selectively killing cells having uncontrolled growth using antibodies that specifically bind ARF-p19 proteins, or conjugates derived from such antibodies; (11) methods of stimulating cell growth using antibodies that specifically bind ARF-p19 proteins, or fragments derived from such antibodies; and (12) transgenic non-human animals that have a genetically engineered alteration in one or more nucleic acids encoding ARF-p19 proteins but which express normal levels of wild-type InK4a-p16 protein, or which overexpress human ARF-p19 or mutant forms of ARF-p19.
BACKGROUND OF THE INVENTION
Neoplasia, the pathological process by which tumors develop, necessarily involves unregulated, or at best misregulated, cellular growth and division. The molecular pathways that regulate cellular growth must inevitably intersect with those that regulate the cell cycle. The cell cycle consists of a cell division phase and the events that occur during the period between successive cell divisions, known as interphase. Interphase is composed of successive G1, S, and G2 phases, and normally comprises 90% or more of the total cell cycle time. Most cell components are made continuously throughout interphase; it is therefore difficult to define distinct stages in the progression of the growing cell through interphase. One exception is DNA synthesis, since the DNA in the cell nucleus is replicated only during a limited portion of interphase. This period is denoted as the S phase (S=synthesis) of the cell cycle. The other distinct stage of the cell cycle is the cell division phase, which includes both nuclear division (mitosis) and the cytoplasmic division (cytokinesis) that follows. The entire cell division phase is denoted as the M phase (M=mitotic). This leaves the period between the M phase and the start of DNA synthesis, which is called the G1 phase (G=gap), and the period between the completion of DNA synthesis and the next M phase, which is called the G2 phase (Alberts, B. et al.,
Molecular Biology of the Cell
, Garland Publishing, Inc., New York & London (1983), pages 611-612.).
Progression through different transitions in the eukaryotic cell cycle is positively regulated by a family of master enzymes, the cyclin-dependent kinases (reviewed by Sherr, C. J.,
Cell
73:1059-1065 (1993)). These holoenzymes are composed of two proteins, a regulatory subunit (the cyclin), and an associated catalytic subunit (the actual cyclin-dependent kinase or CDK), the levels of which vary with different phases of the cell cycle (Peters, G.,
Nature
371:204-205 (1994)). Both cyclins and CDKs represent molecular families that encompass a variety of genetically related but functionally distinct proteins. Generally, different types of cyclins are designated by letters (i.e., cyclin A, cyclin B, cyclin D, cyclin E, etc.); CDKs are distinguished by numbers (CDK1, CDK2, CDK3, CDK4, CDK5, etc.; CDK1 is a.k.a. CDC2).
CDK-cyclin D complexes regulate the decision of cells to replicate their chromosomal DNA (Sherr,
Cell
73:1059-1065 (1993)). As cells enter the cycle from quiescence, the accumulation of CDK-cyclin D holoenzymes occurs in response to mitogenic stimulation, with their kinase activities being first detected in mid-G1 phase and increasing as cells approach the G1/S boundary (Matsushime et al.,
Mol. Cell. Biol
. 14:2066-2076 (1994); Meyerson and Harlow,
Mol. Cell. Biol
. 14:2077-2086 (1994)). The cyclin D regulatory subunits are highly labile, and premature withdrawal of growth factors in G1 phase results in a rapid decay of CDK-cyclin D activity that correlates with the failure to enter S phase. In contrast, removal of growth factors late in GI phase, although resulting in a similar collapse of CDK-cyclin D activity, has no effect on further progression through the cell cycle (Matsushime et al.,
Cell
65:701-713 (1991)). Microinjection of antibodies to cyclin D1 into fibroblasts during G1 prevents entry into the S phase, but injections performed at or after the G1→S transition are without effect (Baldin et al.,
Genes
&
Devel
. 7:812-821 (1993); Quelle et al.,
Genes
&
Devel
. 7:1559-1571 (1993)). Therefore, CDK-cyclin D complexes execute their critical functions at a late G1 checkpoint, after which cells become independent of mitogens for completion of the cycle. In mammals, cells enter the cell cycle and progress through G1 phase in response to extracellular growth signals which trigger the transcriptional induction of D-type cyclins. The accumulation of D cyclins leads to their association with two distinct catalytic partners, CDK4 and CDK6, to form kinase holoenzymes. Several observations argue for a significant role of the cyclin D-dependent kinases in phosphorylating the retinoblastoma protein, pRb, leading to the release of pRB-associated transcription factors that are necessary to facilitate progression through the G1→S transition. First, CDK-cyclin D complexes have a distinct substrate preference for pRb but do not phosphorylate the canonical CDK substrate, histone H1 (Matsushime et al.,
Cell
71:323-334 (1992); Matsushime et al.,
Mol. Cell. Biol
. 14:2066-2076 (1994); Meyerson and Harlow,
Mol. Cell. Biol
. 14:2077-2086 (1994)). Their substrate specificity may be mediated in part by the ability of D-type cyclins to bind to pRb directly, an interaction which is facilitated by a Leu-X-Cys-X-Glu pentapeptide that the D cyclins share with DNA oncoproteins that also bind pRb (Dowdy et al.,
Cell
73:499-511 (1993); Ewen et al.,
Cell
73:487-497 (1993); Kato et al.,
Genes
&
Devel
. 7:331-342 (1993)). Second, cells in which pRb function has been disrupted by mutation, deletion, or after transformation by DNA tumor viruses are no longer inhibited from entering S phase by microinjection of antibodies to D cyclin, indicating that they have lost their dependency on the cyclin D-regulated G1 checkpoint (Lukas et al.,
J. C

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ARF-P19, a novel regulator of the mammalian cell cycle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ARF-P19, a novel regulator of the mammalian cell cycle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ARF-P19, a novel regulator of the mammalian cell cycle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2922660

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.