Aqueous pearlescing concentrates

Drug – bio-affecting and body treating compositions – Live hair or scalp treating compositions – Anionic surfactant containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S070100, C424S070190, C424S070210, C424S070220

Reexamination Certificate

active

06210659

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to aqueous polyol-free pearlescing concentrates based on selected surface-active emulsifiers and pearlescent waxes and to their use for the production of pearlescent surface-active compositions.
For centuries, the softly shimmering luster of pearls has held a particular fascination for human beings. It is therefore no wonder that manufacturers of cosmetic preparations endeavour to give their products an attractive, valuable and rich appearance. The first pearlescence used in cosmetics in the middle ages was a pearlescent paste of natural fish scales. At the beginning of the present century, it was discovered that bismuth oxide chlorides were also capable of producing pearlescence. By contrast, pearlescing waxes, particularly of the glycol monofatty acid ester and difatty acid ester type, are of importance in modem cosmetics, being used mainly for the production of pearlescence in hair shampoos and shower gels. An overview of modem pearlescing formulations was published by A. Ansmann and R. Kawa in Parf. Kosm., 75, 578 (1994).
Large numbers of pearlescing compositions and formulations are known from the prior art. For example, DE-A1 35 19 080 (Henkel) describes free-flowing pearlescing concentrates containing 5 to 15% by weight glycol esters, 1 to 6% by weight fatty acid monoethanolamides and 1 to 5% by weight nonionic ethylene oxide adducts with HLB values of 12 to 18. DE-A1 37 24 547 (Henkel) relates to alkanolamide-free pearlescing concentrates which contain 5 to 20% by weight fatty acids and 3 to 10% by weight emulsifiers in addition to glycol fatty acid esters. According to European patents EP-B1 0 376 083 and EP-B1 0 570 398 (Henkel), 15 to 40% by weight glycol fatty acid esters are processed together with 5 to 55% by weight nonionic ampholytic or zwitterionic emulsifiers and 0.1 to 5% by weight or 15 to 40% by weight glycerol to form a pearlescing concentrate. Free-flowing preservative-free pearlescing dispersions containing surfactants (betaines, anionic surfactants, ethoxylates) and glycerol in addition to glycol fatty acid esters are known from DE-A1 42 24 715 (Hoechst). EP-A1 0 684 302 (Th. Goldschmidt) proposes pearlescers containing polyglycerol esters. European patents EP-B1 0 181 773 and EP-B1 0 285 389 (Procter & Gamble) disclose silicone-containing shampoo formulations which contain long-chain acyl compounds as pearlescing waxes. The use of alkyl polyglucosides and selected other surfactants (alkyl sulfates, fatty acid isethionates, betaines and the like) as emulsifiers for the production of pearlescing compositions is known from WO 93/15171 and WO 95/03782 (ICI) and from WO 94/24248 (Henkel Corp.) and WO 95/13863 (SEPPIC). Finally, pearlescent hair conditioners containing selected cationic surfactants are described in EP-A1 0 367 939 (Wella).
Despite this extensive prior art, the problem of providing aqueous pearlescing concentrates, for example as raw materials for the production of hair shampoos, which flow as superconcentrates, even in the absence of polyols (for example glycerol), still exists. Accordingly, the problem addressed by the present invention was to remedy this deficiency.
DESCRIPTION OF THE INVENTION
The present invention relates to aqueous polyol-free pearlescing concentrates containing
(a) alkyl ether sulfates,
(b1) betaines and/or
(b2) alkyl and/or alkenyl oligoglycosides and
(c) (oligo)ethylene glycol mono- and/or difatty acid esters.
It has surprisingly been found that an emulsifier mixture of selected anionic and nonionic or amphoteric surfactants, together with pearlescing waxes, can be used for the production of aqueous pearlescing concentrates which flow in highly concentrated form without requiring the presence of polyols, for example glycerol. The invention includes the observation that components (a) and (b) form liquid crystalline phases.
Alkyl ether sulfates
It is known that alkyl ether sulfates are anionic surfactants which are industrially produced by the sulfation of fatty alcohol polyglycol ethers with SO
3
or chlorosulfonic acid (CSA) and subsequent neutralization. Ether sulfates suitable for the purposes of the invention correspond to formula (I):
R
1
O—(CH
2
CH
2
O)
m
SO
3
X  (I)
in which R
1
is a linear or branched alkyl and/or alkenyl group containing 6 to 22 carbon atoms, m is a number of 1 to 10 and X is an alkali metal and/or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium. Typical examples are the sulfates of addition products of on average 1 to 10 and, more particularly, 2 to 5 moles of ethylene oxide with caproic alcohol, caprylic alcohol, 2-ethyl hexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical mixtures thereof in the form of their sodium and/or magnesium salts. The ether sulfates may have both a conventional homolog distribution and a narrow homolog distribution. It is particularly preferred to use ether sulfates based on adducts of, on average, 2 to 3 moles of ethylene oxide with technical C
12/14
or C
12/18
cocofatty alcohol fractions in the form of their sodium and/or magnesium salts.
Betaines
Betaines are known surfactants which are mainly produced by carboxyalkylation, preferably carboxymethylation, of aminic compounds. The starting materials are preferably condensed with halocarboxylic acids or salts thereof, more particularly with sodium chloroacetate, 1 mole of salt being formed per mole of betaine. The addition of unsaturated carboxylic acids, for example acrylic acid, is also possible. Particulars of the nomenclature and, in particular, the distinction between betaines and “genuine” amphoteric surfactants can be found in the article by U. Ploog in Seifen-Öle-Fette-Wachse, 198, 373 (1982). Other reviews of this subject have been published, for example, by A. O'Lenick et al. in HAPPI, Nov. 70 (1986), by S. Holzman et al. in Tens. Surf. Det. 23, 309 (1986), by R. Bibo et al. in Soap Cosm. Chem. Spec., Apr. 46 (1990) and by P. Ellis et al. in Euro Cosm. 1, 14 (1994). Examples of suitable betaines are the carboxyalkylation products of secondary and, in particular, tertiary amines corresponding to formula (II):
in which R
2
stands for alkyl and/or alkenyl groups containing 6 to 22 carbon atoms, R
3
stands for hydrogen or alkyl groups containing 1 to 4 carbon atoms, R
4
stands for alkyl groups containing 1 to 4 carbon atoms, n is a number of 1 to 6 and X is an alkali metal and/or alkaline earth metal or ammonium. Typical examples are the carboxymethylation products of hexyl methyl amine, hexyl dimethyl amine, octyl dimethyl amine, decyl dimethyl amine, dodecyl methyl amine, dodecyl dimethyl amine, dodecyl ethyl methyl amine, C
12/14
cocoalkyl dimethyl amine, myristyl dimethyl amine, cetyl dimethyl amine, stearyl dimethyl amine, stearyl ethyl methyl amine, oleyl dimethyl amine, C
16/18
tallow alkyl dimethyl amine and technical mixtures thereof.
Other suitable betaines are carboxyalkylation products of amido-amines corresponding to formula (III):
in which R
5
CO is an aliphatic acyl group containing 6 to 22 carbon atoms and 0 or 1 to 3 double bonds, m is a number of 1 to 3 and R
3
, R
4
, n and X are as defined above. Typical examples are reaction products of fatty acids containing 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and technical mixtures thereof, with N,N-dimethyl aminoethyl amine, N,N-dimethyl aminopropyl amine, N,N-diethyl aminoethyl amine and N,N-diethyl aminopropyl amine which are condensed with sodium chloroacetate. It is preferred to use a condensation product of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aqueous pearlescing concentrates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aqueous pearlescing concentrates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous pearlescing concentrates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2508583

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.