Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Liquid composition
Reexamination Certificate
1999-03-31
2001-05-22
Gupta, Yogendra (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Liquid composition
C510S505000, C510S506000, C252S586000, C560S180000
Reexamination Certificate
active
06235702
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to aqueous pearlescent concentrates containing esters of polybasic carboxylic acids or hydroxycarboxylic acids, emulsifiers and optionally polyols, to a process for their production, to a process for the production of pearlescent surface-active formulations using the concentrates and to the use of esters of polybasic carboxylic acids and hydroxycarboxylic acids as pearlescent waxes.
2. Discussion of Related Art
For centuries, the softly shimmering luster of pearls has held a particular fascination for human beings. It is therefore no wonder that manufacturers of cosmetic preparations endeavour to give their products an attractive, valuable and rich appearance. The first pearlescence used in cosmetics in the middle ages was a pearlescent paste of natural fish scales. At the beginning of the present century, it was discovered that bismuth oxide chlorides were also capable of producing pearlescence. By contrast, pearlescent waxes, particularly of the glycol monofatty acid ester and difatty acid ester type, are of importance in modem cosmetics, being used mainly for the production of pearlescence in hair shampoos and shower gels. An overview of modern pearlescent formulations was published by A. Ansmann and R. Kawa in Parf. Kosm., 75, 578 (1994).
Various formulations capable of providing surface-active products with the required pearlescence are known from the prior art. For example, German patent applications DE-A1 38 43 572 and DE-A1 41 03 551 (Henkel) describe pearlescent concentrates in the form of free-flowing aqueous dispersions containing 15 to 40% by weight of pearlescent components, 5 to 55% by weight of emulsifiers and 0.1 to 5% by weight or 15 to 40% by weight of polyols. The pearlescent waxes are acylated polyalkylene glycols, monoalkanolamides, linear saturated fatty acids or ketosulfones. European patents EP-B1 0 181 773 and EP-B1 0 285 389 (Procter & Gamble) describe shampoo compositions containing surfactants, non-volatile silicones and pearlescence waxes. European patent application EP-A2 0 205 922 (Henkel) relates to free-flowing pearlescent concentrates containing 5 to 15% by weight of acylated polyglycols, 1 to 6% by weight of fatty acid monoethanolamides and 1 to 5% by weight of nonionic emulsifiers. According to the teaching of European patent EP-B1 0 569 843 (Hoechst), nonionic, free-flowing pearlescent dispersions can also be obtained by preparing mixtures of 5 to 30% by weight of acylated polyglycols and 0.1 to 20% by weight of selected nonionic surfactants. In addition, European patent application EP-A2 0 581 193 (Hoechst) describes free-flowing, preservative-free pearlescent dispersions containing acylated polyglycol ethers, betaines, anionic surfactants and glycerol. Finally, European patent application EP-A1 0 684 302 (Th. Goldschmidt) relates to the use of polyglycerol esters as crystallization aids for the production of pearlescent concentrates.
Despite the large number of formulations, there is a constant need on the market for new pearlescent waxes which, in contrast to acylated polyglycols for example, do not contain any ethylene oxide units and which are distinguished from known products by their brilliant luster, even when used in smaller quantities, so that critical ingredients, such as silicones for example, may also be used without any adverse effect on the stability of the formulations and which, at the same time, contain ester groups, thus guaranteeing adequate biodegradability, and which are free-flowing and hence easy to handle, particularly in concentrated form. Accordingly, the problem addressed by the present invention was to provide new pearlescent concentrates which would satisfy the complex requirement profile described above.
DESCRIPTION OF THE INVENTION
The present invention relates to aqueous pearlescent concentrates containing—based on the non-aqueous component
(a) 1 to 99.1 % by weight of esters of polybasic and optionally hydroxy-functionalized carboxylic acids with fatty alcohols containing 6 to 22 carbon atoms,
(b) 0.1 to 90% by weight of anionic, nonionic, cationic, ampholytic and/or zwitterionic emulsifiers and
(c) 0 to 40% by weight of polyols,
with the proviso that the quantities add up to 100% by weight.
It has surprisingly been found that esters of polybasic carboxylic and/or hydroxycarboxylic acids with fatty alcohols have excellent pearlescing properties and are distinguished from known products by greater brilliance, even when used in smaller quantities, particular particle fineness and stability in storage. The pearlescent waxes are readily biodegradable and free-flowing in concentrated form and even enable problematical ingredients, for example silicones, to be incorporated in cosmetic formulations.
Polybasic Carboxylic Acid and Hydroxycarboxylic Acid Esters
The pearlescent waxes which form component (a) are known substances which may be obtained by the relevant methods of preparative organic chemistry. The esters are normally prepared in known manner by base-catalyzed esterification of carboxylic acids and/or hydroxycarboxylic acids containing 4 to 12 carbon atoms, 2 to 4 carboxyl groups and 1 to 5 hydroxyl groups with the fatty alcohols. Suitable acid components are, for example, malonic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, phthalic acid, isophthalic acid and, in particular, succinic acid and also malic acid, citric acid and, in particular, tartaric acid and mixtures thereof. The fatty alcohols contain 6 to 22, preferably 12 to 18 and, more preferably, 16 to 18 carbon atoms in the alkyl chain. Typical examples are caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical mixtures thereof. The esters may be present as full or partial esters, monoesters and above all diesters of the carboxylic or hydroxycarboxylic acids preferably being used. Typical examples are succinic acid mono- and dilauryl ester, succinic acid mono- and dicetearyl ester, succinic acid mono- and distearyl ester, tartaric acid mono- and dilauryl ester, tartaric acid mono- and dicocoalkyl ester, tartaric acid mono- and dicetearyl ester, citric acid mono-, di- and trilauryl ester, citric acid mono-, di- and tricocoalkyl ester and citric acid mono-, di- and tricetearyl ester. The esters may be used in quantities of 1 to 99.9% by weight, based on the concentrates, and are normally used in quantities of 5 to 75% by weight, preferably 10 to 50% by weight and more preferably 15 to 30% by weight.
Emulsifiers
The pearlescent concentrates according to the invention may contain nonionic surfactants from at least one of the following groups as emulsifiers:
(b1) adducts of 2 to 30 moles of ethylene oxide and/or 0 to 5 moles of propylene oxide with linear fatty alcohols containing 8 to 22 carbon atoms, with fatty acids containing 12 to 22 carbon atoms and with alkylphenols containing 8 to 15 carbon atoms in the alkyl group;
(b2) C
12/18
fatty acid monoesters and diesters of adducts of 1 to 30 moles of ethylene oxide with glycerol;
(b3) glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated fatty acids containing 6 to 22 carbon atoms and ethylene oxide adducts thereof;
(b4) alkyl mono- and oligoglycosides containing 8 to 22 carbon atoms in the alkyl group and ethoxylated analogs thereof;
(b5) adducts of 15 to 60 moles of ethylene oxide with castor oil and/or hydrogenated castor oil;
(b6) polyol esters and, in particular, polyglycerol esters such as, for example, polyglycerol polyricinoleate or polyglycerol poly-12-hydroxystearate. Mixtures of compounds from several of these classes are also suitable;
(b7) adducts of 2 to 15 moles
Ansmann Achim
Kawa Rolf
Podubrin Stefan
Westfechtel Alfred
Drach John E.
Gupta Yogendra
Henkel Kommaditgesellschaft auf Aktien
Trzaska Steven J.
Webb Gregory E.
LandOfFree
Aqueous nacreous lustre concentrate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aqueous nacreous lustre concentrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous nacreous lustre concentrate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2442566