Plant protecting and regulating compositions – Plant growth regulating compositions – Organic active compound containing
Reexamination Certificate
2001-01-30
2002-09-17
Clardy, S. Mark (Department: 1616)
Plant protecting and regulating compositions
Plant growth regulating compositions
Organic active compound containing
C504S236000, C504S248000, C504S345000, C504S358000
Reexamination Certificate
active
06451739
ABSTRACT:
The present invention relates to aqueous homogeneous compositions in the form of active compound concentrates for regulating plant growth having an active compound concentration of at least 20%, and to the use of these active compound concentrates for preparing aqueous spray solutions having increased activity.
Active compounds which regulate plant growth can have various effects on virtually all development stages of a plant, and they are therefore used as growth regulators. Such active compounds have a number of different application possibilities, for example in plant cultivation, in agriculture and in horticulture. With their aid, it is possible to strongly inhibit the vegetative growth of the plants, which is manifested in particular in a reduction in the longitudinal growth. The treated plants therefore have a stocky growth; additionally, a darker leaf coloration is observed. Advantageous for practice is a reduced intensity of the growth of grasses on roadsides, hedges, canal embankments and on greens such as parks, playing fields, fruit plantings, ornamental lawns and airfields, so that it is possible to reduce the labor- and cost-intensive grass cutting.
It is also of economic interest to increase the resistance to lodging of crops which are prone to lodging, such as cereals, maize and sunflowers. The culm shortening and culm strengthening caused in this case reduce or eliminate the risk of lodging (of falling over) of plants under unfavorable weather conditions before harvesting. The application of growth regulators for inhibiting the longitudinal growth and for temporally altering the course of ripening in cotton is also important. Completely mechanized harvesting of this important crop plant is thus made possible. In the case of fruit and other trees, pruning costs can be reduced using the growth regulators. In addition, the alternation of fruit trees can be broken by means of growth regulators. Using growth regulators, it is also possible to increase or inhibit the lateral branching of the plants. This is of interest where, for example in the case of tobacco plants, the formation of side shoots (suckers) is to be inhibited in favor of leaf growth.
In the case of winter rape, for example, it is also possible to considerably increase the frost resistance by using growth regulators. In this case, on the one hand, the longitudinal growth and the development of an excessively luxuriant (and thereby particularly frost-susceptible) foliage or biomass are inhibited. On the other hand, after sowing and before the winter frosts set in, the young rape plants are held back in their vegetative development in spite of favorable growth conditions. As a result, the frost-susceptibility of plants which are prone to premature degeneration of the inhibition of flowering and to transition into the generative phase is also eliminated. In other crops as well, for example in winter grain, it is advantageous if the populations are well tillered by treatment with the growth regulators in the fall, but are not too luxuriant when going into the winter. It is thus possible to prevent increased frost sensitivity and, because of the relatively low foliage or biomass, attack by various diseases (for example fungal diseases). Moreover, in the case of many crop plants, it is possible to plant the soil more densely by inhibiting vegetative growth, so that higher yields per area can be achieved.
With the aid of growth regulators, it is possible to obtain higher yields both of parts of plants and of plant constituents. Thus, it is also possible, for example, to induce the growth of greater amounts of buds, flowers, leaves, fruits, seeds, roots and tubers, to increase the sugar content in sugarbeet, sugarcane and citrus fruits, to increase the protein content in grain or soybeans or to stimulate rubber trees to an increased flow of latex. In this case, the active compounds can cause increases in yield by intervention in the plant metabolism or by promoting or inhibiting vegetative and/or generative growth. Finally, both shortening or prolongation of the development stages and acceleration or retardation of the ripening of the harvested parts of plants before or after harvesting can be achieved using plant growth regulators.
Of economic interest is, for example, the facilitation of harvesting, which is made possible by the temporally concentrated fall or decrease in the adhesiveness to the tree in the case of citrus fruits, olives or in the case of other species and varieties of pomes, drupes and indehiscent fruit. The same mechanism, i.e. the promotion of the formation of abscission tissue between the fruit or leaf and shoot part of the plant is also essential for a well-controlled defoliation of useful plants, such as, for example, cotton.
The water consumption of plants can furthermore be reduced using growth regulators. This is particularly important for areas under agricultural cultivation which have to be irrigated artificially at high cost, for example in arid or semiarid regions. By using growth regulators, the intensity of irrigation can be reduced, and a more cost-effective management procedure can be carried out. Under the influence of growth regulators, the water that is available is utilized more effectively since, inter alia, the opening width of the stomata is reduced, a thicker epidermis and cuticle are formed, the root penetration of the soil is improved, the transpiring leaf surface is reduced, or the microclimate in the crop plant population is favorably effected by a more compact growth.
Growth-regulating active compounds which are used in the sector of agriculture are, inter alia, N,N,N-trimethyl-N-&bgr;-chloroethylammonium chloride (CCC, chlorocholine chloride, chlormequat, DE 12 94 734), N,N-dimethylmorpholinium chloride (DMC, DE 16 42 215) and N,N-dimethylpiperidinium chloride (DPC, MQC, mepiquat chloride, DE 22 07 575). These active compounds, in particular chlormequat chloride and mequat chloride, are typically employed in the cultivation of cereals, at relatively high application concentrations. The application rate of these active compounds per application is generally 0.3-1.5 kg/ha. The products are commercially available as aqueous active compound concentrates, tablets or granules (for example PIX®, PIX® DF, BASF Corporation).
With a view to the fact that the active compounds are employed at relatively high application rates, there is a demand for highly concentrated active compound formulations which are diluted with the required amount of water immediately prior to use. However, highly concentrated active compound solutions are problematic, since it is generally necessary to add various additives to the formulations for stabilization and/or for enhancing the activity. As a result, there are frequent incompatibilities of the individual additives and/or active compounds with one another, so that unstable formulations are obtained which are characterized by the occurrence of turbidity, precipitation of the additives or active compounds or by poor storage stability. If the total concentration of additives and active compounds exceeds a certain maximum value, there are often further disadvantageous effects, such as, for example, phase separation, sedimentation or even more pronounced turbidity. These mixing incompatibilities are either noticeable directly, by the occurrence of a two-phase system, or they result, in the longer term, in a reduced storage stability of the solutions. Under these circumstances, it is often no longer possible to add the desired or required additives in total to the ready-made-up formulation, so that the additives have to be supplied to the user in separate containers. The user mixes the concentrates with the other additives, dilutes them with water and adds them to the tank or spray container immediately prior to use. In principle, this constitutes a disadvantage in the handling of such formulations, since an additional operation is required. Additionally, in the case of improper and negligently erroneous use (for example, mixing errors, dilution
Berghaus Rainer
Borzyk Oliver
Höppner Peter
Kiessling Ulrich
Kober Reiner
BASF - Aktiengesellschaft
Clardy S. Mark
Keil & Weinkauf
LandOfFree
Aqueous growth-regulating compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aqueous growth-regulating compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous growth-regulating compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2858949