Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic phosphorus compound – wherein the phosphorus is...
Reexamination Certificate
1998-05-08
2003-09-09
Howard, Jacqueline V. (Department: 1764)
Solid anti-friction devices, materials therefor, lubricant or se
Lubricants or separants for moving solid surfaces and...
Organic phosphorus compound, wherein the phosphorus is...
C508S291000, C508S501000, C508S555000, C508S562000, C508S579000, C508S583000, C528S503000
Reexamination Certificate
active
06617288
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates to aqueous compositions which contain a metal free thiophosphorus acid ester or salts thereof which contain at least one hydrocarbyl terminated oxyalkylene group and methods of using the same.
BACKGROUND OF THE INVENTION
An ongoing problem in the area of lubricating machinery is improving the water based lubricant's ability to prevent metal-on-metal contact. Previously, phosphorus esters were used, often in combination with other additives, to provide antiwear and extreme pressure protection to lubricants. It would be advantageous to have additives which improve the antiwear and extreme pressure protection of the aqueous lubricants.
SUMMARY OF THE INVENTION
This invention relates to an aqueous composition comprising water, a surfactant or thickener, and at least one metal-free thiophosphorus acid ester, at least one amine salt of the thiophosphorus acid ester, or a mixture thereof, wherein the thiophosphorus acid ester contains at least one hydrocarbyl terminated oxyalkylene group, at least one hydrocarbyl terminated polyoxyalkylene group, or a mixture thereof. The aqueous compositions have improved antiwear/extreme pressure properties and improved antioxidation properties. In these compositions, the thiophosphorus acid esters and their salts act as antiwear agents and rust inhibitors.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The term “hydrocarbyl” includes hydrocarbon as well as substantially hydrocarbon groups. Substantially hydrocarbon describes groups which contain heteroatom substituents that do not alter the predominantly hydrocarbon nature of the substituent. Examples of hydrocarbyl groups include the following:
(1) hydrocarbon substituents, i.e., aliphatic (e.g., alkyl or alkenyl) and alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, aromatic-, aliphatic- and alicyclic-substituted aromatic substituents and the like as well as cyclic substituents wherein the ring is completed through another portion of the molecule (that is, for example, any two indicated substituents may together form an alicyclic radical);
(2) substituted hydrocarbon substituents, i.e., those substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent; those skilled in the art will be aware of such groups (e.g., halo (especially chloro and fluoro), hydroxy, mercapto, nitro, nitroso, sulfoxy, etc.);
(3) heteroatom substituents, i.e., substituents which will, while having a predominantly hydrocarbon character within the context of this invention, contain an atom other than carbon present in a ring or chain otherwise composed of carbon atoms (e.g., alkoxy or alkylthio). Suitable heteroatoms will be apparent to those of ordinary skill in the art and include, for example, sulfur, oxygen, nitrogen and such substituents as, e.g. pyridyl, furyl, thienyl, imidazolyl, etc.
In general, no more than about 2, preferably no more than one heteroatom substituent will be present for every ten carbon atoms in the hydrocarbyl group. Typically, there will be no such heteroatom substituents in the hydrocarbyl group. Therefore, the hydrocarbyl group is hydrocarbon.
The thiophosphorus acid ester is generally present in an amount to improve the antiwear or extreme pressure properties of the aqueous compositions. In one embodiment, the thiophosphorus acid ester is present in an amount from about 0.01% up to about 10%, or from about 0.05% or up to about 4%, or from about 0.08% up to about 3%, or from 0.1% to about 2% by weight. Here, as well as elsewhere in the specification and claims, the range and ratio limits may be combined.
Thiophosphorus Acid Esters
As described above, the thiophosphorus acid ester has at least one group which is a hydrocarbyl terminated oxyalkylene group, or salts of the thiophosphorus acid esters. In one embodiment, the thiophosphorus acid esters are free of metal, e.g. ashless. The thiophosphorus acid esters or their salts may have one, two or three hydrocarbyl terminated oxyalkylene groups. Preferably, the thiophosphorus acid esters or salts have one or two, more preferably two hydrocarbyl terminated oxyalkylene groups, or a mixture of compounds having one, two or three hydrocarbyl terminated oxyalkylene groups. In one embodiment, the thiophosphorus acid esters and/or the aqueous compositions are free of dithiophosphorus acid esters and their salts, such as metal (e.g. zinc) or amine salts.
The hydrocarbyl moiety of the hydrocarbyl terminated oxyalkylene group generally contains up to about 30, or up to about 24, or up to about 18 carbon atoms. The hydrocarbyl moiety typically contains at least 1, or at least about 6, or at least about 8 carbon atoms. Examples of hydrocarbyl moieties include octyl, nonyl, decyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, docosyl, tetracosyl, etc. In one embodiment, the hydrocarbyl moiety is free of sulfur. In another embodiment, the hydrocarbyl moiety is aliphatic.
The oxyalkylene moiety typically contains from 1 to about 18 carbon atoms, preferably from about 2 to about 8, more preferably two or three carbon atoms. The hydrocarbyl terminated oxyalkylene group may contain from one to about 40 oxyalkylene moieties. In one embodiment, the hydrocarbyl terminated oxyalkylene group has from about 2 to about 15, or from about 2 to about 10, or from about two to about three oxyalkylene moieties. In one embodiment, the number of oxyalkylene groups is an average. In one embodiment, the oxyalkylene groups are derived from alkylene oxides, such as those described herein (e.g. ethylene oxide, propylene oxide, butylene oxide, etc.)
Hydrocarbyl terminated oxyalkylene groups are derived from hydrocarbyl terminated oxyalkylenes. The hydrocarbyl terminated oxyalkylene may be prepared by treatment of an alcohol, a phenol, an amine, such as those discussed below, including a monoamine, or a mercaptan, such as a C
1-30
or C
1-18
mercaptan, with at least one alkylene oxide, preferably an alkylene oxide having from one to about eight carbon atoms. Examples of alkylene oxides include ethylene oxide, propylene oxide, and butylene oxide. Preferably the hydrocarbyl terminated oxyalklyene is an alkyl terminated oxyalkylene. The alkyl terminated polyoxyalkylenes are available commercially under such trade names as “CARBOWAX®” and “TERGITOL®” from Union Carbide, “TRITON®” from Rohm & Haas Company, “ALFONIC®” from Vista Chemicals Company, “GENEPOL®” from Hoechst Celanese Corporation, and “NEODOL®” from Shell Chemical Company. The TERGITOLS are identified as polyethylene glycol ethers of primary or secondary alcohols. Particularly preferred TERGITOL alkyl terminated oxyalkylenes are the TERGITOL® 15-S Series of secondary polyethylene glycol ethers. Examples of this series include TERGITOL 15-S-3, TERGITOL 15-S-5, TERGITOL 15-S-7, TERGITOL 15-S-9, TERGITOL 15-S-12, TERGITOL 15-S-15, TERGITOL 15-S-20, TERGITOL 15-S-30, and TERGITOL 15-S-40, wherein the last number of the series refers the average number of oxyethylene moieties in the ethers. The GENAPOL ethoxylated alcohols are synthetic or natural linear alcohols which are treated with ethylene oxide. An example of one of these alcohols is GENAPOL® 24-L-3, which is a C
12-14
synthetic alcohol treated with about three moles of ethylene oxide. The TRITON materials are identified generally as polyethoxylated alcohols or phenols. The ALFONIC materials are identified as ethoxylated linear alcohols which may be represented by the general structural formula,
CH3(CH2)
d
CH2(OCH2CH2)
e
OH,
wherein d varies between 4 and 16 and e is a number between about 3 and about 11. Specific examples of ALFONIC® ethoxylates characterized by the above formula include ALFONIC 1012-60 wherein d is about 8 to 10 and e is an average of about 5 to 6; ALFONIC 1214-70 wherein d is about 10-12 and e is an average of about 10 to about 11; ALFONIC 1412-40, wherein d is about 10-12 and e is an average of about 2.5; ALFONIC 1412-60 wherein d is from 10-12 and e i
Konzman Edward J.
Mathur Naresh Chand
Gilbert Teresan W.
Howard Jacqueline V.
The Lubrizol Corporation
Tritt William C.
LandOfFree
Aqueous compositions containing thiophosphorus esters or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aqueous compositions containing thiophosphorus esters or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous compositions containing thiophosphorus esters or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3089321