Aqueous coating compositions comprising metallic pigment

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S430000, C524S431000, C523S210000, C427S419100, C427S419200, C427S419500

Reexamination Certificate

active

06335390

ABSTRACT:

The present invention relates to novel aqueous coating compositions which comprise a water-soluble or water-dispersible film-forming polymer, a metallic pigment based on coated metal flakes, an organic nitro compound which is further carboxyl-, carbonyl- and/or hydroxyl-functionalized, and an organic solvent in which the nitro compound is soluble, along with further components customary for aqueous coating compositions.
The invention additionally relates to the preparation of these coating compositions.
Furthermore, the invention relates to pigment preparations which comprise a metallic pigment based on coated metal flakes, an organic nitro compound which is further carboxyl-, carbonyl- and/or hydroxyl-functionalized, and an organic solvent in which the nitro compound is soluble or dispersible.
The invention also relates not least to the use of organic nitro compounds which are further carboxyl-, carbonyl- and/or hydroxyl-functionalized for stabilizing metallic pigments based on coated metal flakes in aqueous coating compositions.
Metallic pigments belong to the group of the luster pigments, which are increasingly being employed in numerous segments of industry: for example, in automotive finishes, in decorative coating, in plastics pigmentation, in paints, in printing inks and in cosmetics. Their optical effect is based on the directed reflection of light at predominantly sheetlike, mutually parallel-oriented, metallic pigment particles. There is particular interest in metallic pigments with a multiphase composition, which are coated, for example, with thin films of metal oxides such as iron(III) oxide, titanium dioxide, chromium(III) oxide and/or silicon dioxide and which on the basis of interference, reflection and possibly absorption phenomena create angle-dependent color and lightness effects (EP-A-033 457, EP-A-338 428, EP-A-580 022, EP-A-708 154). Particularly noteworthy among these are the iron(III) oxide-coated aluminum pigments, which feature bright gold and orange hues with a pronounced lightness flop.
However, the oxide layer of these pigments is not always able to provide the aluminum substrate flakes with sufficient protection against attack by liquid water or water vapor, so that in contact with water the evolution of hydrogen is observed. Consequently, these pigments cannot be employed in aqueous coating compositions in the absence of additional stabilization. Such stabilization is necessary in particular when the pigments are combined with finely divided oxide-type pigments or fillers, examples being finely divided transparent iron oxides or finely divided titanium dioxide, something which is desirable on the basis of the attractive color effects.
To stabilize uncoated aluminum pigments against water there are a range of well-known methods, such as phosphating, chromating and vanadating. Aliphatic and aromatic nitro compounds are also used for this purpose. For instance, U.S. Pat. No. 2,848,344 uses nitro-functional hydrocarbons such as nitroethane, nitropropane and nitrobenzene to stabilize aluminum flakes against small amounts of water, in the presence of a fatty acid lubricant and a hydrocarbon solvent. In U.S. Pat. No. 5,215,579, nitroethane is combined with phosphates in order to produce aluminum pigment preparations for aqueous coating compositions.
Further, EP-A-595 131 and 678 561 describe the passivation of uncoated and iron oxide-coated aluminum pigments by gas-phase decomposition of volatile compounds of phosphorus, of silicone and of vanadium in the presence of the pigment particles.
It is an object of the present invention to provide metallic pigments based on coated metal flakes with simple but effective stabilization, without detracting from their color properties, such that they can be employed universally in aqueous coating compositions.
We have found that this object is achieved by aqueous coating compositions which comprise a water-soluble or water-dispersible film-forming polymer, a metallic pigment based on coated metal flakes, an organic nitro compound which is further carboxyl-, carbonyl- and/or hydroxyl-functionalized, and an organic solvent in which the nitro compound is soluble, along with further components customary for aqueous coating compositions.
We have also found a process for preparing the aqueous coating compositions, which comprises dissolving the nitro compound in the organic solvent, then mixing this solution first with the metallic pigment and subsequently with the further components of the coating composition.
We have also found pigment preparations which comprise a metallic pigment based on coated metal flakes, an organic nitro compound which is further carboxyl-, carbonyl- and/or hydroxyl-functionalized, and an organic solvent in which the nitro compound is soluble or dispersible.
Not least, we have also found the use of organic nitro compounds which are further carboxyl-, carbonyl- and/or hydroxyl-functionalized for stabilizing metallic pigments based on coated metal flakes in aqueous coating compositions.
The aqueous coating compositions of the invention comprise the above-described metallic pigments as color-imparting component, particular importance being attached to aluminum flakes coated with metal oxides, especially with metal oxides of high refractive index such as chromium oxides (especially Cr
2
O
3
), titanium oxides (especially TiO
2
) and, in particular, iron oxides (especially Fe
2
O
3
).
The coating compositions of the invention customarily contain from 0.1 to 10% by weight of metallic pigment.
The organic nitro compound in the coating compositions of the invention stabilizes the metallic pigments effectively and simply. The nitro compound is further carboxyl-, carbonyl- and/or hydroxyl-functionalized and can be aliphatic or aromatic but preferably is aromatic. Aromatic carboxylic acids, alcohols, aldehydes and ketones which contain a benzene ring carrying up to 3 nitro groups are preferred.
Examples of preferred nitro compounds are 2-, 3- and 4-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 2- and 3-nitrophthalic acid, 3- and 5-nitrosalicylic acid, 2-nitrophenylacetic acid, 2-, 3- and 4-nitrophenol, 2,3,5-trinitrophenol (picric acid), 2-, 3- and 4-nitrobenzaldehyde, and 2-, 3- and 4-nitroacetophenone.
With the aid of the nitro compounds employed in accordance with the invention it is possible to stabilize the metallic pigment effectively against attack by water without detracting from its color properties.
Based on the coating composition, the amount of nitro compound employed is generally from 0.01 to 10% by weight, preferably from 0.02 to 3% by weight and, with particular preference, from 0.03 to 1% by weight.
The coating compositions of the invention additionally comprise an organic solvent in which the nitro compound is soluble.
This solvent is preferably a polar solvent which is a customary component of the coating composition. It is of course also possible to use an additional solvent which is compatible with the other components of the coating composition.
Examples of particularly suitable solvents are alkylene glycol -monoethers, preference being given to ethylene glycol mono-C
1
-C
8
-alkyl ethers and propylene glycol mono-C
1
-C
8
-alkyl ethers and particular preference to the corresponding C
1
-C
4
-alkyl ethers; further particularly suitable solvents are alkylene glycol ether acetates, and ketones. Individual examples that may be mentioned include ethylene glycol monopropyl and monobutyl ether, 1,2-propylene glycol monomethyl and monoisopropyl ether, propylene glycol monoethyl ether acetate, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone and methyl hexyl ketone, particular preference being given to ethylene glycol monobutyl ether and propylene glycol monomethyl ether.
The film-forming polymer employed in the coating compositions of the invention can be any of the polymers known for aqueous systems (e.g. varnishes, paints, and printing inks), examples being polyurethane resins, polyester resins, acrylic resins and/or alkyd resins; polyurethane resins are preferred.
These poly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aqueous coating compositions comprising metallic pigment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aqueous coating compositions comprising metallic pigment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous coating compositions comprising metallic pigment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2850824

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.