Aqueous coating agent and its use in lacquers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06407151

ABSTRACT:

Nitrocellulose combi-lacquers, prepared by dissolving nitrocellulose (NC), an alkyl resin, plasticiser and possibly optional lacquer additives in organic solvents are known. These lacquers may be used to lacquer surfaces such as e.g. wood, metal, paper, leather, plastics, etc. The disadvantage of these is the high solvent content of 60to80%.
EP 0 076 443 describes the preparation, inter alia, of aqueous NC/alkyd resin emulsions in which the solvent is entirely or partly replaced by water. If surfaces, e.g. of wood, are lacquered with these aqueous emulsions and the chemical resistance determined in accordance with DIN 68 861, part 1, 1 B, then the resistances to water, ethanol and acetone are not sufficient.
Chemically cross-linking aqueous two-component polyurethane coating agents with free polyisocyanates as hardeners for the binder were described in EP 0 358 979. According to that document, polyhydroxyacrylates as binder components are capable of emulsifying certain polyisocyanates with free isocyanate groups, these also being called lacquer polyisocyanates. The aqueous two-component system produced in this way cures to give cross-linked films. The lacquer polyisocyanates are biuret, urethane, uretdione and/or isocyanate group-containing oligomeric derivatives of readily available monomeric or simple diisocyanates, in particular of hexamethylene dilsocyanate (HDI), isophorone diisocyanate (IPDI) and/or bis(isocyanatocyclohexyl)methane (HMDI). The lacquer polyisocyanates used in accordance with EP 0 3 358 979 have a viscosity at 23° C. of up to 1000 mPa·s and have an average NCO functionality of 2.2 to 5.
DE-OS-A 4 226 243 describes an aqueous two-component coating agent based on polyisocyanates and self-emulsifying fatty acid modified polyesters and poly-urethanes. European patent application EP-A 0 496 205 also describes aqueous binder combinations based on polyisocyanates and self-emulsifying urethane, carboxyl and hydroxyl group-containing polyester resins. German patent DE 3 122 030 describes coating compositions consisting of polyisocyanate and water-dilutable alkyd, melamine and acrylic resins which also contain water-miscible solvent.
The disadvantage of these water-dilutable two-component binders described above is the low solids content which can be achieved, the short pot life and the long drying/curing times. Furthermore, wetting onto wood, the initial hardness and the sandability are unsatisfactory.
Now, the object of the invention comprises improving the resistance of aqueous NC lacquer resin emulsions so that good resistances in accordance with DIN 68 861, part 1, B 1, are achieved with these aqueous single-component systems.
The invention concerns an aqueous emulsion the process of its preparation entails adding a cellulose substance to the reaction products or to a mixture of a poly-isocyanate with a lacquer resin that contains at least one hydroxyl group. A single component lacquer emulsion is obtained by adding at least one plasticizer and water and optionally at least one emulsifier and organic solvent.
The lacquer emulsions comprise a product prepared from:
a) 5-50 wt. % of cellulose substance
b) 5-50 wt. % of one or more hydroxyl group-containing lacquer resins
c) 0.1-10 wt. % of polyisocyanates with more than one free isocyanate group
d) 0.5-30 wt. % of plasticiser
e) 0.0-20 wt. % of emulsifier
f) 0.0-45 wt. % of at least one organic solvent
g) 10-65 wt. % of water
wherein the sum of a) to g) is always 100 wt. %, characterised in that the ratio by weight of cellulose substance to OH group-containing lacquer resin is 1:5 to 5:1 and the ratio by equivalents of OH groups (from the lacquer resin) to NCO groups is 1:0.01-1.0.
Suitable cellulose substances are preferably cellulose esters, in particular nitrocelluloses of any level of viscosity or plasticised nitrocelluloses or mixtures of these. Nitrocellulose, for example in conventional industrial nitrocellulose grades, i.e. cellulose nitrates with a nitrogen content of 10.7 to 12.6 wt. %, is very particularly suitable.
Other cellulose substances which can be used are cellulose acetobutyrate and cellulose acetopropionate in varying stages of viscosity and substitution.
Conventional lacquer resins may be used as lacquer resins if these contain isocyanate-reactive groups such as e.g. —OH, —COOH, —NH
2
, —CONH
2
. Conventional lacquer resins are e.g. alkyd, maleic acid, phenol, formaldehyde, xylene-formaldehyde, ketone, sulfonamide, aldehyde, amine, epoxy, carbamate, coumarone/indene resins, esters of saccharose and vinyl or acrylate resins and copolymers of these.
It is advantageous if the hydroxyl group-containing lacquer resins have an OH value between 20 and 200 mg KOH/g.
Plasticisers which may be used are conventional plasticisers such as e.g. the esters of aliphatic monocarboxylic acids, preferably with 2 to 18 carbon atoms such as cetyl acetate, glycol diacetate, stearates, ricinoleic acetate, dicarboxylic acids such as e.g. dioctyl adipate, dimethylcycohexylmethyl adipate, dibutyl sebacate; aromatic dicarboxylic acids such as e.g. dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, aliphatic tricarboxylic acids, preferably with 8 carbon atoms, of aromatic dicarboxylic acids and of monohydric alcohols with 2 to 10 carbon atoms, of dihydric alcohols with 2 to 6 carbon atoms and trihydric alcohols with 3 carbon atoms or the esters of inorganic acids such as e.g. tributyl phosphate, triphenyl phosphate; esters of citric acid with alcohols with 1 to 5 carbon atoms which may also be reacted with monocarboxylic acids with 1 to 4 carbon atoms; and also sulfonamides, oils such as castor oil and linseed oil and the alkoxylation products of the compounds mentioned such as e.g. ethoxylated castor oil and soya oil, stearates and phosphates.
The emulsifiers used are optionally anionic emulsifiers, for example long-chain alkylaryl sulfonates such as dodecylbenzene sulfonate or butylnaphthaline sulfonate, alkyl sulfates such as lauryl or stearyl alcohol sulfates, sulfosuccinates such as dioctyl disodium succinate, or non-ionic emulsifiers such as octyl- or nonylphenol-oxyethylates.
The disodium salts of sulfosuccinic acid derivatives of ethoxylated nonylphenols may also be mentioned as anionic emulsifiers.
Conventional organic solvents may be used as solvents provided the cellulose substance and the lacquer resin are soluble therein.
The polyisocyanates are any organic polyisocyanates with aliphatically, cycloaliphatically, araliphatically and/or aromatically bonded, free isocyanate groups which are liquid at room temperature. Particularly preferably, the polyisocyanates are polyisocyanates or polyisocyanate mixtures with exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups with an (average) NCO functionality of between 1.8 and 5.0.
If required, the polyisocyanates may be used mixed with small amounts of inert solvents in order to lower the viscosity to a value within the range mentioned.
Suitable products are, for example, “lacquer polyisocyanates” based on hexamethylene diisocyanate or on 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (IPDI) and/or bis-(isocyanatocyclohexyl)-methane, in particular those which are based exclusively on bexamethylene diisocyanate. “Lacquer polyisocyanates” based on these diisocyanates are understood to be the biuret, urethane, uretdione and/or isocyanate group-containing derivatives known per se of these diisocyanates.
Also suitable according to the invention, but less preferred, aromatic polyisocyanates are in particular “lacquer polyisocyanates” based on 2,4-diisocyanatotoluene or technical grade mixtures of this with 2,6-diisocyanatotoluene or based on 4,4-diisocyantodiphenylmethane or mixtures of this with its isomers and/or higher homologues. These types of aromatic lacquer polyisocyanates are, for example, urethane group-containing isocyanates such as are obtained by reacting Excess amounts of 2,4-diisocyanatotoluene with polyhydric alcohols such as trimethylolpropane. Further aromatic lacquer polyisocyanates are, for example, trim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aqueous coating agent and its use in lacquers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aqueous coating agent and its use in lacquers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous coating agent and its use in lacquers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929964

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.