Animal husbandry – Aquatic animal culturing – Crustacean culturing
Reexamination Certificate
2002-05-08
2003-11-11
Jordan, Charles T. (Department: 3644)
Animal husbandry
Aquatic animal culturing
Crustacean culturing
C119S205000
Reexamination Certificate
active
06644242
ABSTRACT:
FIELD OF THE ART
This invention relates to an aquatic animal incubation device and in particular, relates to a container structure that is favorable for use as an incubation container for brine shrimp.
BACKGROUND ART
Brine shrimp (Artemia) is an aquatic animal (a kind of shrimp) that has the characteristic of hatching in sea water and its eggs can be preserved in the condition of dried eggs over a long period of time. Brine shrimp larvae that have been hatched from the eggs are thus generally used as feed for aquarium fish and other aquatic animals.
Brine shrimp eggs hatch readily upon being placed in sea water and stirred continuously. In a general hatching method, saltwater (seawater or artificial seawater, etc.) is prepared in a container, brine shrimp eggs are placed in this container, an air tube is set inside this container, and air is blown in so that bubbles will rise through the salt water and the salt water will be stirred by the rising bubbles. Brine shrimp larvae hatch from the eggs in about one day.
The hatched brine shrimp larvae are scooped from inside the container using a net, etc. and are given as feed to aquarium fish, etc. in an aquarium tank. In this case, since numerous egg shells and non-hatched eggs that remain after hatching exist in the container and since the egg shells and unhatched eggs decompose with time, the water quality of the salt water in the container degrades. In addition, since egg shells and non-hatched eggs are introduced along with the larvae into the aquarium tank in the feeding process, there is also the problem that such egg shells and unhatched eggs decompose, causing degradation of water quality inside the aquarium tank.
DISCLOSURE OF THE INVENTION
In order to solve the above problem, the present inventor has invented an incubation device, with which the hatched aquatic animals can be induced to move away on their own from the egg shells and unhatched eggs, or an incubation device, with which the hatched aquatic animals can be induced to move on their own from inside the container to inside the aquarium tank.
This incubation device is comprised of an incubation tank for the hatching of aquatic animals and a separation tank for separating the hatched aquatic animals. The abovementioned incubation tank and separation tank are put into communication with each other via a communicating port. At a region at the communicating port side of the separation tank is provided a light-shielding wall part that is provided with a higher light-shielding property than other parts of the abovementioned separation tank.
Since the vicinity of the communicating port is made dark and the side away from the communicating port is made brighter by the provision of light-shielding property at, the communicating port side of the separation tank, larvae that have moved from the incubation tank into the separation tank move away on their own from the communicating port in the separation tank. Since eggshells and unhatched eggs are thus separated from larvae in the separation tank, just the larvae can be taken out readily.
The abovementioned separation tank may be provided with a side opening. By placing an incubation device provided with this side opening in water, the larvae that have been separated inside the separation tank can be made to swim out into the water outside the incubation device via the side opening. In this case, it is preferable for the abovementioned light-shielding wall part to be arranged so as not to shield light in the vicinity of the abovementioned side opening or so that the degree of light shielding will be lower in the vicinity of the abovementioned side opening than in the region that is covered by the abovementioned light-shielding wall part. In particular, when a part exists above the abovementioned side opening of the above-described separation tank, a light-shielding wall part is preferably provided at this part as well.
When such a side opening is provided, the shape of the separation tank is preferably arranged so that the entirety is inclined upwards towards the side opening side. It is especially preferable for the lower part of the separation tank to be inclined upwards towards the side opening side. By such an arrangement, eggshells that have entered inside the separation tank can be prevented from moving to the exterior from the side opening.
Examples of the modes of providing the abovementioned light-shielding property include a structure with which a part of the wall of the abovementioned separation tank is colored to shield a part of the external light, a structure with which a part of the wall of the abovementioned separation tank is thickened to shield a part of the external light, a structure with which a part of the wall of the abovementioned separation tank is colored and thickened, a structure with which a light-shielding layer is formed on the wall of the abovementioned separation tank, etc. It is also preferable to increase the light-shielding property by roughening the surface of the wall.
The abovementioned light-shielding wall part is preferably arranged to extend over a wider range in the direction away from the abovementioned communicating port at the side opposite the abovementioned side opening than at the side of the abovementioned side opening.
The above-described separation tank preferably has an enlarged part that gradually increases in cross-sectional area with the distance away from the abovementioned communicating port. Due to this enlarged part, even when water current flows into the enlarged part of the separation tank from the incubation tank, the water current will be attenuated and the stillness of the interior of the separation tank will-be maintained by the gradual increase of cross-sectional area from the communicating port onwards. By this arrangement, in the case where salt water is placed in the entirety of the incubation tank and the lower part of the separation tank, freshwater is placed in the upper part of the separation tank, and an interface is formed between the salt water and freshwater in the separation tank, the stillness of the interface can be maintained and the salt water and freshwater can be prevented from becoming mixed readily.
The abovementioned light-shielding wall part is preferably arranged so as to cover the entirety of the abovementioned-enlarged part and to extend beyond the outer edge of the abovementioned enlarged part in the direction away from the abovementioned communicating port. By arranging the wall region provided with light-shielding property to extend beyond the enlarged part, it becomes possible to readily induce the larvae to move across and beyond the outer edge of the enlarged part. Normally in the case where a light-shielding wall part is not provided, the larvae that have moved into the separation tank tend to stay at the salt water side of the interface between salt water and freshwater. Thus by arranging the abovementioned light-shielding wall part to extend beyond the outer edge of the enlarged part, it becomes possible to prevent the staying of larvae at the salt water side of the interface even when the abovementioned interface is set above the enlarged part.
The abovementioned communicating port is preferably provided at the lowermost parts of the above-described incubation tank and the above-described separation tank. When the communicating port is provided at the lowermost parts of the incubation tank and separation tank, the unhatched eggs that have become mingled inside the separation tank via the communicating port can be made to sediment by gravity and thereby returned to the vicinity of the communicating port. The amount of unhatched eggs that stay in the separation tank can thereby be reduced.
The above-described separation tank preferably has an inner bottom surface that inclines gradually upwards from the abovementioned communicating port. Unhatched eggs that have become mingled inside the separation tank can readily be made to drop towards communicating port along this inclined inner bottom surface and thereby returned to the i
Cook,Alex,McFarron,Manzo,Cummings & Mehler, Ltd.
Guppy Co., Ltd.
Jordan Charles T.
Shaw Elizabeth
LandOfFree
Aquatic animal incubation device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aquatic animal incubation device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aquatic animal incubation device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3167583