Data processing: artificial intelligence – Neural network – Learning method
Reexamination Certificate
2007-06-21
2010-11-09
Holmes, Michael B (Department: 2129)
Data processing: artificial intelligence
Neural network
Learning method
Reexamination Certificate
active
07831531
ABSTRACT:
A method including training a plurality of learning systems, each learning system implementing a learning function and having an input and producing an output, initializing one or more data structures, and evaluating a target sample is described. Also described are methods that include initializing one or more data structures and evaluating a target sample for a best match.
REFERENCES:
patent: 4811399 (1989-03-01), Landell et al.
patent: 5706364 (1998-01-01), Kopec et al.
patent: 6023693 (2000-02-01), Masuoka et al.
patent: 6236758 (2001-05-01), Sodagar et al.
patent: 6494720 (2002-12-01), Meyrowitsch
patent: 6563909 (2003-05-01), Schmitz
patent: 6585521 (2003-07-01), Obrador
patent: 6704920 (2004-03-01), Brill et al.
patent: 6751601 (2004-06-01), Zegers
patent: 6763339 (2004-07-01), Fu et al.
patent: 6766523 (2004-07-01), Herley
patent: 6773266 (2004-08-01), Dornbush et al.
patent: 6782186 (2004-08-01), Covell et al.
patent: 6879967 (2005-04-01), Stork
patent: 6892191 (2005-05-01), Schaffer
patent: 6895514 (2005-05-01), Kermani
patent: 6944632 (2005-09-01), Stern
patent: 7103801 (2006-09-01), Marilly et al.
patent: 7107207 (2006-09-01), Goodman
patent: 7174293 (2007-02-01), Kenyon et al.
patent: 7266492 (2007-09-01), Goodman
patent: 7281219 (2007-10-01), Hamilton et al.
patent: 7375304 (2008-05-01), Kainec et al.
patent: 7386479 (2008-06-01), Mizuno
patent: 7472096 (2008-12-01), Burges et al.
patent: 7617164 (2009-11-01), Burges et al.
patent: 2002/0133499 (2002-09-01), Ward et al.
patent: 2003/0093790 (2003-05-01), Logan et al.
patent: 2003/0101144 (2003-05-01), Moreno
patent: 2004/0025174 (2004-02-01), Cerrato
patent: 2004/0031058 (2004-02-01), Reisman
patent: 2004/0128682 (2004-07-01), Liga et al.
patent: 2004/0199387 (2004-10-01), Wang et al.
patent: 2005/0066352 (2005-03-01), Herley
patent: 2005/0086682 (2005-04-01), Burges et al.
patent: 2005/0096920 (2005-05-01), Matz et al.
patent: 2005/0147256 (2005-07-01), Peters et al.
patent: 2005/0193016 (2005-09-01), Seet et al.
patent: 2005/0283792 (2005-12-01), Swix et al.
patent: 2006/0080356 (2006-04-01), Burges et al.
patent: 2007/0124756 (2007-05-01), Covell et al.
patent: 2007/0130580 (2007-06-01), Covell et al.
patent: 2007/0143778 (2007-06-01), Covell et al.
patent: 2008/0090551 (2008-04-01), Gidron et al.
patent: 2008/0263041 (2008-10-01), Cheung
patent: 1524857 (2005-12-01), None
Training neural networks with additive noise in the desired signal Chuan Wang; Principe, J.C.; Neural Networks, IEEE Transactions on vol. 10, Issue 6, Nov. 1999 pp. 1511-1517 Digital Object Identifier 10.1109/72.809097.
An information theoretic approach to adaptive system training using unlabeled data Kyu-Hwa Jeong; Jian-Wu Xu; Principe, J.C.; Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on vol. 1, Jul. 31-Aug. 4, 2005 pp. 191-195 vol. 1 Digital Object Identifier 10.1109/IJCNN.2005.1555828.
Training neural networks with additive noise in the desired signal Chuan Wang; Principe, J.C.; Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on vol. 2, May 4-9, 1998 pp. 1084-1089 vol. 2 Digital Object Identifier 10.1109/IJCNN.1998.685923.
Connectionist training of non-linear hidden Markov models for speech recognition Zhao, Z.; Neural Networks, 1991. 1991 IEEE International Joint Conference on Nov. 18-21, 1991 pp. 1647-1652 vol. 2 Digital Object Identifier 10.1109/IJCNN.1991.170645.
On adaptive acquisition of language, Gorin, A.L.; Levinson, S.E.; Miller, L.G.; Gertner, A.N.; Ljolje, A.; Goldman, E.R.; Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on Digital Object Identifier: 10.1109/ICASSP.1990.115784 Publication Year: 1990 , pp. 601-604 vol. 1.
An adaptive function neural network (ADFUNN) for phrase recognition, Miao Kang; Palmer-Brown, D.; Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on vol. 1 Digital Object Identifier: 10.1109/IJCNN.2005.1555898 Publication Year: 2005 , pp. 593-597 vol. 1.
A Multi-layer ADaptive FUnction Neural Network (MADFUNN) for Analytical Function Recognition, Miao Kang; Palmer-Brown, D.; Neural Networks, 2006. IJCNN '06. International Joint Conference on Digital Object Identifier: 10.1109/IJCNN.2006.246895 Publication Year: 2006 , pp. 1784-1789.
An all-phoneme ergodic HMM for unsupervised speaker adaptation, Miyazawa, Y.; Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on vol. 2 Digital Object Identifier: 10.1109/ICASSP.1993.319372 Publication Year: 1993 , pp. 574-577 vol. 2.
Robust Technologies towards Automatic Speech Recognition in Car Noise Environments, Ding, P.; He, L.; Yan, X.; Zhao, R.; Hao, J.; Signal Processing, 2006 8th International Conference on vol. 1 Digital Object Identifier: 10.1109/ICOSP.2006.345538 Publication Year: 2006.
Learning to Rank Using Semantic Features in Document Retrieval, Tian Weixin; Zhu Fuxi; Intelligent Systems, 2009. GCIS '09. WRI Global Congress on vol. 3 Digital Object Identifier: 10.1109/GCIS.2009.148 Publication Year: 2009 , pp. 500-504.
Input Data Representation for Self-Organizing Map in Software Classification, Yuqing Lin; Huilin Ye; Knowledge Acquisition and Modeling, 2009. KAM '09. Second International Symposium on vol. 2 Digital Object Identifier: 10.1109/KAM.2009.151 Publication Year: 2009 , pp. 350-353.
‘A Highly Robust Audio Fingerprinting System’ [online]. Haitsma et al. 2002,[retrieved on Nov. 16, 2006]. Retrieved from the Internet: <URL: www.ismir2002.ismir.net/proceedings/02-FP04-2.pdf>, 9 pages.
‘A Review of Algorithms for Audio Fingerprinting’ [online]. Cano et al., 2002, [retrieved on May 30, 2007]. Retrieved from the Internet: <URL: www.iua.upf.es/mtg/publications/MMSP-2002-pcano.pdf>, 5 pages.
Baluja et al., “Learning “Forgiving” Hash Functions: Algorithms & Large Scale Tests” Jun. 2006, 7 pages.
Burges at al “Using Audio Fingerprinting for Duplicate Detection and Thumbnail Generation,” Mar. 2005, 4 pages.
‘Computer Vision for Music Identification’ [online]. Ke et al., 2005, [retrieved on May 30, 2007]. Retrieved from the Internet: <URL: www.cs.cmu.edu/˜yke/musicretrieval/cvpr2005-mr.pdf>, 8 pages.
‘CS276 Information Retrieval and Web Mining’ [online]. Stanford, 2005, [retrieved on Nov. 16, 2006]. Retrieved from the Internet: <URL: www.stanford.edu/class/cs276/handouts/lecture19.pdf>, 8 pages.
‘Data Mining: Associations’ [online]. Stanford, 2002, [retrieved on May 30, 2007]. Retrieved from the Internet: <URL: www.stanford.edu/class/cs345a/pdf/cs345-1sh.pdf>, 61 pages.
‘Duplicate Detection and Audio Thumbnails with Audio Fingerprinting’ [online]. Burges et al. 2004, [retrieved on Nov. 21, 2006]. Retrieved on the Internet: <URL: www.research.microsoft.com/˜cburges/tech—reports/tr-2004-19.pdf>, 5 pages.
‘Fast Multiresolution Image Querying’ [online]. Jacobs et al, 1995, [retrieved on Nov. 21, 2006]. Retrieved from the Internet: <URL: www.grail.cs.washington.edu/proiects/query/mrquery.pdf>, 10 pages.
‘Finding Interesting Associations without Support Pruning’ [online]. Cohen et al. Retrieved from the Internet: <URL: www.dbis.informatik.hu-berlin.de/dbisold/lehre/WS0405/KDD/papaer/CDFG—00.pdf> 12 pages.
‘Shazam Entertainment Brings Music Recognition to Windows Mobile 5.0 Powered Smartphones’ [online]. Shazam, 2006, [retrieved on Nov. 16, 2006]. Retrieved from the Internet: <URL: www..shazam.com/music/portal/sp/s/media-type/html/user/anon/page/default/template/pages/p/company—release30.html>, 1 page.
‘Shazam Experience Music’ [online]. [retrieved on May 30, 2007]. Retrieved from the Internet: <URL: www.shazam.com/music/portal/sp/s/media-type/html/user/anon/page/default/template/Myhome/music.html>, 2 pages.
Baluja Shumeet
Covell Michele
Fish & Richardson P.C.
Google Inc.
Holmes Michael B
LandOfFree
Approximate hashing functions for finding similar content does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Approximate hashing functions for finding similar content, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Approximate hashing functions for finding similar content will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4196642