Dispensing – Plural sources – compartment – containers and/or spaced jacket
Reexamination Certificate
2001-12-12
2002-11-12
Jacyna, J. Casimer (Department: 3751)
Dispensing
Plural sources, compartment, containers and/or spaced jacket
C215S012200, C215SDIG006, C225S093000
Reexamination Certificate
active
06478191
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to applicators or dispensers which comprise crushable ampoules, preferably housed within flexible tubular containers. The invention also relates to methods of producing such applicators or dispensers.
2. Description of Related Art
Applicators comprising crushable glass ampoules housed within flexible applicator bodies are known in the art. Examples of such applicators comprise flexible tubular elements that have at least one end permanently closed. The other end can be frangibly closed or remain open to the environment. The crushable glass ampoules are typically sealed and contain a composition to be dispensed. Applicator tips are sometimes fixed to the open end to aid in the application of the composition contained within the ampoule. This type of applicator is useful for multiple applications including use as air fresheners, use in dye marking, and use in pregnancy test kits, as well as for dispensing medical solutions, dental products, health and beauty aids, adhesives, and other compositions. To use the dispenser, the flexible applicator tube is squeezed at the area where the glass ampoule is located. Sufficient force is applied by a user's fingers to break the glass ampoule, releasing the composition contained within. The composition is then applied through, or otherwise allowed to exit, the open end (i.e., the end with the applicator tip).
One drawback to such applicators is the possibility of a glass shard from the broken ampoule piercing the flexible tube and entering the user's hand during crushing and dispensing. Upon crushing of the glass ampoule, multiple small sharp glass shards are created. Among the glass shards created during breakage of the glass, shards having a length sufficient to transect the flexible applicator tube are created. A certain percentage of these shards become reoriented such that they are perpendicular to the length of the applicator tube (i.e., with their longitudinal axis oriented toward the user's finger(s)). The force applied during crushing and dispensing can be sufficient to force at least some of these reoriented shards through the flexible tube and into the user's finger(s).
This disadvantage is overcome in some applicators by a cardboard overcap that can be placed around the applicator body to protect the user's fingers during crushing of the ampoule. Such an applicator, consisting of a glass ampoule, a plastic butyrate tube, and a cardboard overcap, is sold by the James Alexander Corporation of Blairstown, N.J. In operation, prior to crushing of the ampoule, the cardboard sleeve is slid over the ampoule and the user crushes the ampoule by squeezing the ampoule with the user's fingers through the cardboard sleeve. However, this solution does not eliminate the production of reoriented glass shards, and is subject to a certain failure rate due to the reoriented shards puncturing the overcap along with the flexible tube. It also requires a separate part that makes the dispenser a two-handed operation to place the cardboard cover on the applicator. Moreover, as the sleeve is opaque, one cannot see whether the ampoule has been properly crushed during use without removal of the sleeve.
Commonly assigned U.S. Pat. No. 5,928,611 (previously published under PCT Application No. WO 96/40797), the disclosure of which is hereby incorporated in its entirety, discloses an applicator for dispensing polymerizable or cross-linkable monomer compositions. The applicator comprises an applicator body that holds a crushable ampoule. The crushable ampoule contains the monomer composition that is to be dispensed. The applicator can further comprise an applicator tip. This applicator, like those described above, does not disclose means to avoid reorientation of glass shards.
Other methods for protecting a user's hands during crushing of a glass ampoule are disclosed in U.S. Pat. No. 5,690,958 to McGrath. McGrath discloses a unit dose applicator for dispensing chlorhexadine gluconate (CHG). The applicator may be an elongated cylindrical glass vial or ampoule that is housed within an elongated cylindrical, flexible, synthetic resin cover of a size to fully encase the vial. A porous applicator swab is fitted within one end of the applicator cover, and extends outward therefrom. The cover is disclosed as being a protective cover that protects the user's hand from glass shards created during crushing of the unit dose glass container. However, McGrath does not disclose or claim the use of his applicator to dispense anything except CHG and has the disadvantage that reoriented glass shards can puncture the protective resin cover.
U.S. Pat. No. 4,826,025 to Abiko et al. discloses an ampoule package that is designed to be precisely cut at a constriction between upper and lower sections of the package. A heat-shrink film is provided over the constriction part to prevent scatter of fine particles of glass formed by the cutting of the constriction. Such an ampoule is not designed to be crushed by a user's fingers. Thus Abiko is not concerned with problems of reoriented glass shards that could puncture a user's fingers during the crushing.
Similarly, it is known to coat glass bottles with coating materials to improve resistance to breaking. For example, U.S. Pat. Nos. 3,877,969, 3,889,013, and 4,099,638 to Tatsumi et al. disclose coating the surface of glass bottles with two different kinds of coating materials in a specific sequence. The coating materials include an olefin copolymer containing OH and/or COOH groups in its molecule. The coating also includes a polyisocyanate or a mixture of a polyisocyanate and a polyol or a thermoplastic polyurethane. These methods are not disclosed as having applicability to, and in fact are conceptually opposed to, glass containers that are designed to be broken, such as glass ampoules broken by finger pressure. Rather, they are intended to resist or prevent breakage.
SUMMARY OF THE INVENTION
Thus, there is a need for an applicator comprising a crushable ampoule that can be used without fear of puncture of the skin during crushing. The present invention satisfies that need by providing a protective barrier material over the surface of the crushable ampoule. The protective barrier material not only protects a user's hand from puncture with shards created during crushing of the ampoule, but it can be used and incorporated in an applicator in a convenient and economical manner.
The invention provides an applicator or dispenser, which comprises a crushable ampoule, containing a composition to be dispensed, that is covered or coated by a resistant barrier material. The applicator can further comprise a hollow applicator body made of a flexible and deformable material. The applicator body is of a generally tubular shape, having an end that is permanently closed and another end that can either be closed (sealed) or open to the environment. At least one crushable ampoule is contained within the lumen of the applicator body. Each crushable ampoule is sealed and can contain a composition that is to be delivered or applied to a site or reacted with another material in the applicator. Disposed over a surface of each crushable ampoule is a material that acts as a barrier against formation of reoriented glass shards upon crushing of the ampoule. The barrier material can be applied to either or both of the interior or exterior surface of the crushable ampoule, applied between the ampoule and applicator body, and/or applied to the exterior of the applicator body. It may be applied to the entire interior and/or exterior surface, or may be applied only to a selected portion of such surface. In the latter case, it is preferably applied to a portion, such as a central portion, that is most susceptible to crushing and shard reorientation.
According to one aspect of the invention, the barrier material protects a container body, and thus a user's fingers, from puncture by reoriented glass shards during crushing of the ampou
Barefoot Joe B.
D'Alessio Keith R.
Rivera Andres
Voiers Anthony S.
Closure Medical Corporation
Jacyna J. Casimer
Oliff & Berridg,e PLC
LandOfFree
Applicator with protective barrier does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Applicator with protective barrier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Applicator with protective barrier will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2918533