Applications and methods for voltage instability predictor...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S286000

Reexamination Certificate

active

06249719

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to power systems and protective relays employed therein, and more particularly to new applications and methods of the Voltage Instability Predictor (VIP) disclosed in the '983 application.
BACKGROUND OF THE INVENTION
Voltage instability is closely related to the notion of maximum loadability of a transmission network. In present-day power systems, this may take place as a precursor to the traditional frequency instability problem (see Proceedings of Bulk Power System Voltage Phenomena-III: “Voltage Stability, Security and Control,” Davos, Switzerland, August 1994; and K. Vu, et al., “Voltage Instability: Mechanisms and Control Strategies,” Proc. of IEEE, Special Issue on Nonlinear Phenomena in Power Systems, pp. 1442-1455, November 1995). It is critical for the utility company to track how close the transmission system is to its maximum loading. If the loading is high enough, actions have to be taken to relieve the transmission system.
A problem associated with tracking the maximum loading of the transmission system is that such maximum loading is not a fixed quantity, but rather depends on the network topology, generation and load patterns, and the availability of VAR resources. All of these factors can vary with time due to scheduled maintenance, unexpected disturbances, etc.
Despite the fact that voltage instability is a system problem, there is still a need for relays that process only local measurements. These relays are to be counted upon when other controls cannot mitigate the situation; they also form the fall-back position for any global protection scheme when communication channels fail. Controls that use only local data provide an attractive approach because they are low cost and simple to build. The most common form is to shed load based on voltage level—under-voltage load shedding. This scheme has been attempted on the Pacific Northwest system, as reported by C. W. Taylor, “Power System Voltage Stability,” McGraw Hill, 1994. However, for many other systems, the difficulty with choosing the setpoint poses a challenge. In fact, voltage is often a poor indicator of instability, and a fixed setpoint may result in unnecessary shedding or failure to recognize an instability. Some systems may ride through voltages much below the setpoint of the relay but, for others, the voltage can appear normal even though the grid is on the verge of instability. The idea of using an adjustable voltage setpoint has been known, as reported in IEEE Power Systems Relaying, Committee, Working Group K12, Voltage Collapse Mitigation, 1995.
The true goal of a local relay should be to determine whether the load connected to the substation is excessive. A fundamental issue here is whether the transmission system's strength can be “sensed” from local measurements. It has been well known that conventional, local quantities such as voltage level and reactive reserve are poor indicators of voltage instability, and therefore advanced methods are needed. For example, the use of artificial intelligence on local measurements is disclosed in K. Yabe, et al., “Conceptual Designs of AI-based Systems for Local Prediction of Voltage Collapse,” IEEE 95 WM 181-8 PWRS. The idea is to simulate a range of system conditions to generate patterns in local observations. In the real environment, true measurements are then compared against known patterns, from which the proximity to collapse is inferred.
The Voltage Instability Predictor
As mentioned, the present application is a continuation-in-part of the '983 application, which discloses a Voltage Instability Predictor, or VIP, that estimates the strength/weakness of a transmission system based on local voltage and current measurements, and compares that with the local demand. The closer the local demand is to the estimated transmission capacity, the more imminent is the voltage instability. This information is used for load shedding as well as other applications.
The operation of the VIP may be summarized as follows: Current and voltage waveforms are measured at the bus, and then current and voltage phasors are derived. Based on the phasors, an apparent impedance associated with the load and a Thévenin impedance associated with the source are determined. The Thévenin impedance and apparent impedances are then compared. The VIP decides whether to initiate a prescribed action, such as load shedding and/or controlling on-load tap-changing (OLTC) transformers, based on the relationship of the apparent impedance to the Thévenin impedance. Further details of the VIP are provided below.
SUMMARY OF THE INVENTION
A Voltage Instability Predictor (VIP) in accordance with the present invention estimates the proximity of a power system to voltage collapse in real time. The VIP can be implemented in a microprocessor-based relay whose settings are changed adaptively to reflect system changes. Only local measurements (voltage and current) at the bus terminal are required. The VIP can detect the proximity to collapse in a number of ways, including by monitoring the relationship between the apparent impedance {overscore (Z)}
app
and the Thévenin-impedance, and by using “power margins.” The VIP may be used in connection with radial and non-radial topologies. Moreover, a robust method for tracking voltage collapse in terms of impedance using rolling sums is provided.
In one preferred implementation of the invention, a method for protecting an electrical power system comprises measuring current and voltage phasors at a point on the system; based on the current and voltage phasors, determining an apparent impedance ({overscore (Z)}
app
) associated with a load region and a Thévenin impedance ({overscore (Z)}
Thev
) associated with a source region; comparing the Thévenin impedance and apparent impedances; and deciding whether to initiate a prescribed action based on the relationship of the apparent impedance to the Thévenin impedance.
In an alternative implementation, a method for protecting an electrical power system comprises measuring current and voltage at a point on the system; based on the current and voltage measurements, determining a Thévenin impedance associated with a source region, and determining a power margin in accordance with a prescribed formula; and deciding whether to initiate a prescribed action based on the power margin. In this method, the power margin may be determined in accordance with the following process: obtaining data representing voltage and current at a plurality of points in time; determining the power observed at the present time; forecasting a maximum available power at a future time, based on the plurality of data points; computing a difference between the forecasted maximum available power and the observed current power; and defining the power margin based on the computed difference.
Other features of the present invention are disclosed below.


REFERENCES:
patent: 5566085 (1996-10-01), Marceau et al.
patent: 5642000 (1997-06-01), Jean-Jumeau et al.
patent: 5745368 (1998-04-01), Ejebe et al.
patent: 5963022 (1999-10-01), Buda et al.
Use of Local Measurements to Estimate Voltage-Stability Margin By Khoi Vu, Miroslav M. Begovic, Damir Novosel, Murari Mohan Saha, May 1997.*
Barbier, C. et al., “An Analysis of Phenomena of Voltage Collapse on a Transmission System”,Revue Generale de l'Electricite, 1980, 89(10), 672-690 (English Summary Included).
Begovic, M. et al., “Control of Voltage Stability Using Sensitivity Analysis”,IEEE Trans PWRS, Feb. 1992, 7(1), 114-123.
Kessel, P. et al., “Estimating the Voltage Stability of a Power System”,IEEE Trans PWRD, Jul. 1986, PWRD-1(3), 346-354.
Novosel et al., “Practical Protection and Control Strategies During Large Power-System Disturbances”,IEEE T&DConf. Proceedings, Los Angeles, Sep. 15-20, 1996.
Ohtsuka, K. et al., “An Equivalent of Multi-machine Power Systems and Its Identification for On-Line Application to Decentralized Stabilizers”,IEEE Trans. PWRS, Feb. 1989, 4(2), 687-693.
Proceedings of the IEEE, Special Issue on Nonlin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Applications and methods for voltage instability predictor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Applications and methods for voltage instability predictor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Applications and methods for voltage instability predictor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452096

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.