Application programming interface for monitoring data...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S223000, C707S793000, C707S793000

Reexamination Certificate

active

06363391

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Use
The present invention relates to systems and methods for monitoring information accesses and more particullrly the usage of a data warehouse and the information contained therein.
2. Prior Art
Data warehouses are becoming more and more important to businesses. The term “data warehouse” is generally used to describe a database containing data that was gathered from a variety of sources (e.g. existing production databases). For more information regarding the nature of a data warehouse, reference may be made to the article entitled, “Data Warehousing: An Introduction” by Grayce Booth which appeared in the May/June 1995 issue of the Bull S. A. technical journal entitled, “Technical Update.”
Typically, the data warehouse is implemented as a large amount of data stored in a database with access to the data coming from hundreds of users executing commodity applications like Excel, running on personal computers (PCs). Here, an opportunity for a business exists to manage the data warehouse system. It is useful to the warehouse owner to have information and statistics about the usage of the warehouse and its data. Such information includes: (a) how many users are currently logged onto the system; (b) what is the pattern of access statistics; (c) what data is accessed most frequently, (d) what if any indexes could be added or dropped to improve access efficiency; (e) what if any unlawful access attempts have occurred; and (f) what query runs the longest. Some of this information can be obtained from the warehouse database system but each type of database gathers this information in a different proprietary manner. Therefore, there is an opportunity to be able to provide usage data in a standard fashion for all database types. Also, there is the ability to provide the information through standard system management tools based on standard protocols, such as the Simple Network Management Protocol (SNMP).
As well known in the art, the Open Data Base Connectivity (ODBC) application programming interface is a standard defined by Microsoft Corporation by which Windows based tools and applications may access different databases on many different server platforms. Many PC vendors have adopted ODBC. Without using ODBC, applications are required to use APIs specific to a database vendor for accessing data warehouse information. Using ODBC, an application may access any type of database. In addition, ODBC is used by application tools such as EXCEL such that specific code is not required for each database type being accessed.
Client/Server ODBC is a newer technique for implementing ODBC. The interface to ODBC for user applications remains on the PC but the bulk of the ODBC logic is moved to a server side implementation. All PC users execute their data requests through a common ODBC server. This arrangement provides a “thin” client requirement for the PC user of ODBC and makes the administration of ODBC possible from a single server. This single point of access through the ODBC server also provides the opportunity for administrating the data warehouse. All clients PCs that need to access the data warehouse come through the single point of access (Le. ODBC server).
Although ODBC provides a common PC based API, each relational database management system (RDBMS) vendor typically has implemented a unique interface for data access. To adapt tools based on ODBC to the interfaces used by various types of RDBMS, Microsoft Corporation specifies the development of a “driver”. The driver transforms the ODBC API standard calls into RDBMS specific calls. The use of ODBC provides a layer of consistency above each of the APIs implemented by the RDBMS vendors. In the prior art, a separate ODBC driver was required for each type of RDBMS to be accessed. Additionally, each database vendor typically, requires a tailored communications link An improvement to this approach is to provide a single data access (DDA)ODBC driver to replace multiple customized ODBC drivers with a single implementation that can access multiple types of databases.
An example of the above type of system is the distributed data warehouse (DDW) middleware described in the article entitled, “The Distributed Data Warehouse Solution”by Kirk Mosher and Ken Rosensteel that also appeared in the above referenced May/June 1995 of the Technical Update Journal. This system utilizes a proprietary based infrastructure called DDW/NET that works in conjunction with the DDW/ODBC driver. DDW/NET enables connections to multiple computer architectures, operating systems, and network protocols. The DDW/NET software resides on each of the legacy and server systems that communicate over standard communications links and hides the details of networking from the upper layers of software on each system.
The above prior art system included several features to aid the administrator of the data warehouse. Such features included an SNMP agent that monitored the activity of the distributed data warehouse (DDW) processes and users of the data warehouse and a Usage Monitor facility that recorded SQL database queries issued by individual users. Each of these features required the use of an interface to the DDW Net on a UNIX based platform to help gather the required information. This approach required the use of proprietary interfaces that made it difficult to expand the types of databases used by the system. The data that was needed was not easily accessible from the DDW Net memory. DDW Net design was based on Ingres technology, that could not be easily enhanced. This prior art approach is described in the publication entitled DDW Administrator's Guide, dated Apr. 25, 1997, copyright Bull S. A. and Bull HN Information Systems Inc. 1995, 1996, 1997, Order Number 86 A2 83FC Rev4.
Accordingly, it is a primary object of the present invention to provide a system and method for facilitating monitoring of data warehouse activity.
It is a further more specific object of the present invention to provide an interface arrangement that simplifies data warehouse monitoring through standard protocols.
SUMMARY OF THE INVENTION
The above objects are achieved in a preferred embodiment of the present invention that provides a special application programming interface (API) that provides interoperability between standard protocols utilized in conjunction with the monitoring and administration managing tool components of a data warehouse system. One protocol is the well known data connectivity protocol Open Database Connectivity (ODBC), that. defines a standard interface between applications and data sources. Another protocol is the well known network management protocol Simple Network Management Protocol (SNMP) that defines a standard interface between an agent component and a network management system.
In the preferred embodiment, the warehouse components include a local SNP agent component for gathering data pertaining to the activity of a distributed data warehouse (DDW) processes and the users of the DDW system and a usage monitor component for tracking statistics about the different types of SQL queries issued by individual system users. According to the present invention, the warehouse components further include ODBC server and driver components for operatively connecting to the DDW system target warehouse database for processing SQL queries submitted by warehouse knowledge workers. The ODBC server component also operatively couples to an SQL log that it uses to maintain entries pertaining to user SQL queries it receives from a number of ODBC client user systems. The usage monitor component operatively couples to the SQL log and performs the function of gathering data from the entries that it uses to populate tables of a usage monitor database that it maintains for providing usage statistics.
The SNMP agent component performs further monitoring functions. The component operatively couples to the ODBC server component through the special API that enable such components to have access to a variety of types of information received from the ODBC ser

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Application programming interface for monitoring data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Application programming interface for monitoring data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Application programming interface for monitoring data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.