Apparatuses, devices, systems and methods employing far...

Radiant energy – Radiant energy generation and sources – With radiation modifying member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S495100, C313S359100, C313S360100

Reexamination Certificate

active

06833553

ABSTRACT:

BACKGROUND OF THE INVENTION
Far infrared radiation (FIR) commonly refers to electromagnetic radiation that has a wave length between the visible light region and the microwave region of the electromagnetic spectrum. In general, FIR or other like terms as used herein refers to electromagnetic radiation that has a wavelength ranging from about 5.6 microns to about 1000 microns.
Certain types of ceramics containing silica oxide and aluminum oxide are known to radiate FIR at room temperature, and to radiate elevated levels of FIR when heated.
For example, some types of these ceramics are commonly referred to as bio-ceramics because of reported biological and physiological effects attributed to such materials. However, typical bio-ceramic materials do not emit negative ions at room temperature and are generally limited in their ability to do so unless subject to temperatures exceeding about 1000° F.
FIR-emitting bodies have been used in a variety of applications, such as increasing fuel efficiency, heating, ripening of fruit, deodorizing and inducing perspiration in humans. With respect to this latter use, FIR has been used in saunas as a substitute for traditional steam heat.
With respect to fuel efficiency applications, devices have been developed that introduce FIR to fuel in a non-contact fashion prior to introduction of the fuel into an engine. For example, U.S. Pat. Nos. 6,026,788 and 6,082,339 disclose a FIR emitting device that can be attached to a fuel line in a non-contact fashion. This purportedly can improve fuel efficiency, increase engine power, and reduce harmful exhaust emissions.
Materials are also known that possess a source material capable of emitting negative ions. These types of materials may be useful in industry and by consumers. For example, negative ions have been reported to possess antibacterial and deodorizing properties, and can be effective in removal of airborne pollutants, leaving behind clean and refreshed air. However, the application of negative ion technology can be problematic due to, for example, the fact that the application of the technology typically can require extensive modifications to existing processes, thus increasing costs associated with those processes.
Other materials are known, in general, that can emit both FIR and negative ions. For example, U.S. Pat. No. 6,402,991 discloses a function-enhanced shaped ceramic article obtained by mixing a powder of a functional material of at least one species selected from the group consisting of a mineral, a metal and metallic compound and a powder of a far infrared radiating material composed of a ceramic composition that contains SiO
2
and Al
2
O
3
in specified amounts. Preferably, the amount of the far infrared radiating material is at least 30% weight and not more than 90% weight. As disclosed, this amount of far infrared radiating material is necessary for the article to be easily shaped into a plate-like or a ball-like shaped article. The function-enhanced shaped ceramic article can be directly added to water for anti-bacterial purposes as disclosed in Example 1.
U.S. Pat. No. 5,965,007 discloses a method of preparing water for human consumption and/or use. As disclosed, the method includes submerging ceramics that have an extremely high emissivity of far infrared in water in a specified amount; placing an electrode in the water; and allowing the water to stand for a predetermined period of time, preferably at least 12 hours. The ceramics have such a composition that SiO
2
, Al
2
O
3
, Fe
2
O
3
, MnO
2
, ZnO and CoO are provided in specified concentrations.
Consequently, a need exists to provide improved devices, apparatuses, systems and methods employing both FIR radiating material and negative ion material, or a material that emits both FIR and negative ions.
SUMMARY OF THE INVENTION
The present invention relates to devices, apparatuses, systems and methods of using material capable of emitting both FIR and negative ions and applying the same in a variety of suitable applications.
Applicant has become aware that, by combining material that radiates FIR with material that emits negative ions, or employing a material that emits both FIR and negative ions, in devices, apparatuses, systems and methods, enhanced results are achieved over devices, apparatuses, systems and methods employing only FIR emitting material.
In an embodiment, the material at least includes a two part material with a first part including a material component capable of emitting FIR and an additional material component including an oxide material. In an embodiment, the first part and the second part respectively include about 95% by weight or less and about 5% by weight or more of the material. It will be understood that, in place of material that has constituent components capable of emitting FIR and negative ions, respectively, that a material that emits both FIR and negative ions can be substituted. In an embodiment, the material can include a single material with one or more constituents or a combination of two or more materials.
In an embodiment, the present invention provides an apparatus capable of emitting both far infrared radiation and negative ions. The apparatus includes a conduit through which a fluid can flow; and a material capable of emitting both far infrared radiation and negative ions wherein the material is adaptedly coupled to the conduit such that an effective amount of the far infrared radiation and negative ions is introduced into the fluid flowing through the conduit.
The fluid can include gas, air, liquid, natural gas, water, a liquid fuel source, a gaseous fuel source, the like and combinations thereof associated with any suitable number of processes, such as internal engine combustion, natural gas combustion, water processes and/or the like. As applied, the material of the present invention can be effectively coupled to one or more components associated with the desired application. With respect to internal engine combustion, for example, the material can be coupled to a fuel line, an air intake, an exhaust system, other suitable fuel combustion components and combinations thereof. With respect to natural gas combustion, the material can be coupled to the gas intake and/or the like. This can provide an effective system for enhancing the operational efficiency of the process, such as by increasing fuel efficiency and reducing exhaust emissions as applied to combustion processes and applications thereof.
In another embodiment, the present invention provides a system for enhancing fuel combustion efficiency. The system includes a device including a fuel combustion engine having a conduit through which a fluid can flow; and a material capable of emitting both far infrared radiation and negative ions wherein the material is adaptedly coupled to the conduit such that an effective amount of the far infrared radiation and negative ions are introduced into the fluid flowing through the conduit.
In yet another embodiment, a device for an internal combustion engine having a fluid line through which fluid can flow is provided. The device includes a material capable of emitting far infrared radiation and negative ions wherein the material is so constructed and arranged such that the material substantially contacts at least a portion of the fluid line allowing an effective amount of the far infrared radiation and negative ions to be emitted into the fluid.
In still yet another embodiment, a fluid line for an internal combustion engine is provided that includes at least a portion of the fluid line and a material capable of emitting both far infrared radiation and negative ions adaptedly coupled to the portion of the fluid line allowing an effective amount of the far infrared radiation and the negative ions to be emitted into fluid passing through the fluid line during operation.
In a further embodiment, the present invention provides a method for increasing fuel efficiency of an internal combustion engine. The method includes the steps of coupling a device including a material capable of emitting far i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatuses, devices, systems and methods employing far... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatuses, devices, systems and methods employing far..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatuses, devices, systems and methods employing far... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3303028

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.