Apparatus with and method of unique disk identification for...

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S048000

Reexamination Certificate

active

06424484

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method of manufacturing magnetic disk drives and, specifically, to the unique identification of magnetic disks before, during, and after the assembly of the disk drive.
BACKGROUND OF THE INVENTION
A system to avoid accessing of defects or defective regions on a storage media is disclosed in U.S. Pat. No. 4,498,146 to Maria N. Martinez. The locations of defects on the disk, provided by the disk manufacturer are used to construct a list or table of addresses of defects on the storage media and is recorded on the disk data recording surface. Through conversion, the defect address list is used to produce real addresses of the defects on the disk recording surface. The resulting defect address table is loaded into the disk file controller and the addresses are used to prevent accessing the defective regions during disk drive operations. New defects may be added to the defect address table as detected.
A system for detection of contamination errors for optical disks is disclosed in U.S. Pat. No. 5,513,160 to Isao Satoh et al. The system first detects the defect errors on the disk and, at a later time, detects the total defect errors. The difference represents the contamination errors on an optical disk.
U.S. Pat. No. 5,075,804 issued to Deyring discloses a method for managing recording media defects. The identity and location of good or usable sectors of the recording tracks are maintained in an operating list stored in memory so that the disk drive microprocessor can avoid the use of bad sectors.
Presently, disk drives are comprised of disks that are not or have not been clearly individually identifiable. The disks have been individually tested and, if the disks pass the single disk test criteria, each single disk so tested and accepted is made available for assembly. Once assembled into the disk drive, these disks are retested for defects, and the locations of the defects are determined relative to the rotational datums of the disk drive. Thereafter, a defect table is assembled from the defect locations for each disk and stored on the media or in the memory of the disk controller. The duplicative testing of the disk is necessary both to prevent the use of a grossly defective disk and further to assemble the defect table of locations of the disk relative to disk drive established datums.
Currently, due to cost and inability to access and physically identify a unique disk surface once the disk drive is assembled, the surfaces of magnetic storage disks during the manufacturing process are not serially numbered or marked with any unique identification for later use in the assembled disk drive. Therefore, in the disk drive following assembly, the identity of a particular disk surface is not discernable.
Disk surfaces sometimes have laser scribed serialization; however, reading of the laser scribing requires a microprocessor and microprocessor associated image reading circuitry not found in a magnetic disk drive. Once assembled, however, the laser scribing is not readable in a magnetic disk drive.
As the current trend in magnetic disk drives of higher speed access rates continues, disk drives continue both to be reduced in size and also refined to store larger and larger amounts of data. Due to the very narrow width and close spacing of the data tracks on the disk, the affect of a surface defect in the recording media can render unusable, varying numbers of data tracks on a disk. A few surface defects affecting a nominal number of tracks may be tolerated; but, as the number of defects increases, the affected tracks and sectors soon start to severely limit the storage capacity of the disk.
The ability to identify and accurately account for or keep track of disk surfaces in assembled disk drives, particularly those drives in customer installations, is limited to identifying the disks by manufacturing lot or batch number. The manufacturing data for the disk drive may indicate the lot or batch numbers of the disks incorporated therein, but there is no certainty that the disk identity is reliable, particularly if there has been an overlap or changeover from lot to lot of disks incorporated into the disk drive assembly. Experience has shown that the lot or batch number associated in records with a particular disk drive is not accurate in many instances due to more than one lot or batch of disks being available on the manufacturing line at the same time, particularly whenever such lot or batch changeover occurs. Additionally, when more than one lot or batch number is used in a drive, presently there is no way to know which disk is from the lot being considered. Thus, in the event of a need to recall a lot or batch of disks due to a lot-wide defect, such as low coercivity of the magnetic coating or some other widespread type problem, a large number of disk drives may be needlessly recalled to insure that all the affected disks are identified.
It is very important that any disk drive placed in service not be displaced, removed from service, or disturbed imprudently because the affect can be extremely serious in terms of system down time. Being able to precisely identify individual disks already incorporated into an installed disk drive would permit avoiding use of a potentially defective disk in a drive, reduce the chance of data failure and an associated system crash and permit either the preservation of data or more orderly replacement of the disk drive at a time to minimize system disruption.
Serializing of a disk heretofore has been impractical at the single disk stage of manufacture inasmuch as the recording surface of the disk is not formatted at the single disk stage. Any widespread magnetic recording of readable data patterns thereon later interferes with reading and writing of data on the disk. Accordingly, the magnetic storing of a disk serial number and defect data on the disk has heretofore proved to be futile since the information either would not be reliably retrievable or the defect data would be effectively destroyed whenever the disk was formatted for servo control of the actuator following disk drive assembly and drive level testing.
Data storage disks typically have storage capacity on both sides of a disk. The disk surface includes a data storage region, an annular region near the periphery of the disk in which data is not stored, and an annular ring of substantial width which surrounds the central hole of the disk. As no effort is made to limit coating to only the data recordable portion of the surface, on each side of the disk, the magnetically coated and recordable surface of the annular storage portion of the disk extends between the central hole and the disk edge.
Part of the inner annular ring not used for data recording is used as a clamping region for engagement with inter-disk spacer rings resident on the disk drive hub. The balance of the inner annular ring and an outer ring adjacent the periphery of the disk may be used as a parking or landing zone or load/unload zone for the disk drive magnetic head whenever the drive is stopped, thereby preventing the head from contacting the recordable surface in the data storage zone of the disk surface which may result in disk surface and/or head damage.
The exposed portion of the inner ring and the outer ring are referred to as reserved areas. The manufacturing processes create recordable but otherwise unused surfaces in these reserved areas.
Heads for disk drives may be parked or loaded and unloaded either near the inner limits or the outer limits of the disk depending on the disk drive design. Thus, the magnetic read/write head is capable of being positioned at proper flying height over at least one of the reserved regions of a disk drive.
OBJECTS OF THE INVENTION
It is an object of the invention to readably serialize or otherwise readably uniquely identify each disk surface of a data storage disk drive at an individual disk level for identification in an assembled magnetic disk drive.
It is another object of the invention to serialize or otherwise uniquely identify the di

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus with and method of unique disk identification for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus with and method of unique disk identification for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus with and method of unique disk identification for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.