Apparatus to uniformly distribute bulk conveyed parts for...

Conveyors: power-driven – Conveying system having plural power-driven conveying sections – Recycling load in a closed path

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S396000

Reexamination Certificate

active

06257395

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to automated manufacturing systems and, more particularly, to flexible parts feeding systems for automated inspection and/or manufacturing.
BACKGROUND OF THE INVENTION
Parts feeders used in the manufacturing industry are well known. Typically, such parts feeders comprise various types of hoppers, vibratory-type bowls or centrifugal-type bowls containing a bulk source of parts. These devices are used to separate and orient parts and properly present them to a subsequent process or assembly device. Such devices are typically capable of feeding one part type or a very small family of part types.
The use of a vision-based flexible parts feeders is a relatively new phenomenon in the manufacturing industry which is gaining credibility. With the use of such vision-based parts feeders, companies are able to make their manufacturing systems more flexible by designing feeders with the capability to feed a very wide variety of parts. Doing so allows for a more cost effective means to automate the production of smaller volume products. Typically, in operation, such parts feeders deliver bulk parts from a source to a transport surface for inspection and subsequent picking therefrom by a robot. Preferably, a single camera is used to inspect the separated parts on the transport surface. The inspection is primarily used to identify which parts may be successfully grasped by a robot as well as the location of each identified “pickable” part. Flexible parts feeders also typically include a system for recirculating parts which cannot be grasped by the robot.
The performance and maximum feed rate of a flexible parts feeder is closely related to the feed rate, distribution, separation, stability and orientation of parts passing into the camera field of view as well as the performance of the vision system used therewith. Controlling these part attributes results in the ability to maximize the number of parts that can be inspected and successfully grasped by a robot in a given amount of time. The part feed rate into the camera field of view is preferably very consistent and controlled by the device which introduces parts from the bulk source. The distribution and separation of parts being inspected is preferably controlled by the conveyance portion of the feeder preceding the camera field of view. In addition, this conveyance portion also typically dictates the distribution, separation and, to some extent, the orientation (or number of stable states) of parts passing into the field of view which all affect the number of pickable parts during a given amount of time. The stability of parts as they pass into the camera field of view is also determined by the same conveyance portion and the means by which parts are transferred from the conveyance portion to the said transfer surface. It should be understood that if parts are bouncing around or not resting in the most stable orientations, additional part settle time is needed before inspection may occur which reduces feeder throughput.
One flexible parts feeder known in the prior art includes a series of tiered belts and an elevating bucket device for circulation of parts within the feeder. This parts handling technique results in a flow of parts through the feeder which is inconsistent due to a non-uniform part feed rate into the camera's field of view. In addition, parts are dropped from one belt to another in a way that results in a less than desirable part separation and additional undesirable part resting states. The belt which serves as the inspection surface is typically indexed back and forth to better spread out parts or is rapidly indexed to present more parts to the inspection camera. As a result additional parts settling time is required prior to inspection which limits performance and overall feeder throughput.
Another type of flexible parts feeder which is known in the prior art incorporates two pile-covered vibratory conveyor devices. In this type of parts feeder, a quantity of bulk parts is circulated on two opposing and side-by-side vibratory conveyors to move bulk parts in a generally circulating pattern. The conveyor vibrations and pile material are used to both convey and distribute parts into the field of view of a downward-looking camera which is located directly over one portion of one of the conveyor surfaces. The robot grasps parts directly off of the vibratory conveyor surface. This requires that the part must settle out prior to part inspection and grasping thereby decreasing feeder performance. Further, due to the nature of the bristle geometry of the pile material used for the vibratory conveyor, very small parts or parts with sharp protrusions tend to lodge in the pile material. As a result of the method employed to recirculate parts, control of part feed rate and part distribution through the feeder, and parts “sticking” in the pile material, feeder through put is limited (average feed rates in the range of 15 to 40 parts per minute).
Still another flexible parts feeder available on the market today includes a vibratory hopper for introducing parts from a bulk source, a relatively violent shake platen, a set of adjustable “fences” or gates for partially orienting parts and urging parts into a substantially single file prior to inspection and a belt which is indexed with rapid acceleration and deceleration to transport parts from the platen to the camera inspection area. Primarily due to the process of forming of the single file and the rapid indexing of the belt the rate of “pickable” parts presented to the camera field of view is limited to around 20 to 30 parts per minute.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a parts feeder to an inspection and/or robotic-assisted operation which can achieve higher feed rates of separated parts for inspection or acquisition.
It is a further object of the present invention to provide a vibratory conveyor for use with a parts feeder which effectively spreads out bulk parts onto a surface for inspection in a way that increases the uniform distribution of separated parts on the surface and reduces the amount of time required for the parts to achieve a stable state after the parts are fed onto the final inspection belt surface.
Yet another object of the present invention is to provide a vibratory conveyor which efficiently spreads out bulk parts in a relatively short conveyor length.
Still another object of the present invention is to provide a vibratory conveyor which presents separated parts at a high feed rate without increasing inspection belt velocity.
Another object of the present invention is to provide a vibratory conveyor apparatus that includes a series of ribs protruding upward from the conveyor surface which serve to more quickly spread out and separate bulk parts in both a width-wise and length-wise direction as they pass over the conveyor surface thereby reducing required conveyor length.
Briefly stated, the foregoing and numerous other features, objects and advantages of the present invention will become readily apparent upon a review of the detailed description, claims and drawings set forth herein. These features, objects and advantages are accomplished through the combination of a belt conveyor preferably driven at a constant speed, and a vibratory conveyor which preferably includes flow obstructions which serve to increase the uniform distribution of separated parts and thus, the density of separated parts per unit area of the belt conveyor. It should be understood that effective inspection and/or acquisition of parts can only occur with separated (non-overlapping) parts. The vibratory and belt conveyors are preferably used in conjunction with a bulk elevator and a reciprocating-plate type hopper. The bulk elevator is used to separate a quantity of parts from a storage bin and deliver that quantity to a staging platform. The reciprocating-plate type conveyor separates smaller portions of the parts from the staging platform and delivers them to the vibrator

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus to uniformly distribute bulk conveyed parts for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus to uniformly distribute bulk conveyed parts for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus to uniformly distribute bulk conveyed parts for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2484545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.