Apparatus, systems and methods for detecting and...

Measuring and testing – Gas analysis – Moisture content or vapor pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S023200, C073S031050, C073S023340, C340S603000, C340S632000, C422S083000, C702S188000, C702S024000

Reexamination Certificate

active

06422061

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention generally relates to the detection and transmission of sensory data. More particularly, the present invention relates to an apparatus for detecting and transmitting sensory data of analytes from one portable handheld electronic nose (e-nose) to another for analytic purposes.
Techniques and devices for detecting a wide variety of analytes in fluids such as vapors, gases and liquids are well known. As used herein the term “fluid” means gases, vapors and liquids. An electronic nose is an instrument used to detect vapors or chemical analytes in gases, solutions, and solids. In certain instances, the electronic nose is used to simulate a mammalian olfactory system. In general, an electronic nose is a system having an array of sensors that are used in conjunction with pattern-recognition algorithms. Using the combination of chemical sensors, which produce a fingerprint of the vapor or gas, the recognition algorithms can identify and/or quantify the analytes of interest. The electronic nose is thus capable of recognizing unknown chemical analytes, odors, and vapors.
In practice, an electronic nose is presented with a substance such as an odor or vapor, and the sensor converts the input of the substance into a response, such as an electrical response. The response is then compared to known responses that have been stored previously. By comparing the unique chemical signature of an unknown substance to “signatures” of known substances, the unknown analyte can be determined. A variety of sensors can be used in electronic noses that respond to various classes of gases and odors.
A wide variety of commercial applications are available for electronic noses including, but not limited to, environmental toxicology and remediation, biomedicine, such as microorganism classification or detection, material quality control, food and agricultural products monitoring, heavy industrial manufacturing, ambient air monitoring, worker protection, emissions control, and product quality testing. Many of these applications require a portable device because they are located in the field or because they have an inaccessible location for larger laboratory models. Conventionally, most of the electronic noses have been large cumbersome laboratory models incapable of being used in the field and pilot plant applications. If available, a portable or handheld device would provide the portability required for pilot plant and field locations. Unfortunately, the portable chemical detectors that have been developed thus far have many limitations that have kept them from being widely accepted.
For instance, U.S. Pat. No. 5,356,594, which issued to Neel et al., discloses a portable volatile organic monitoring system designed for use in detecting fugitive emissions. The device includes a bar code reader for inventorying the emission site. The device contains a single sensor responsive to ionized gas, however the device only detects the amount (i.e., concentration) of the volatile compound. The device is incapable of identifying the volatile organic compound. Thus, the device is merely a vapor amount logger and not a portable electronic nose. As such, the user is required to know the identity of the vapor being quantitated or this information must be stored elsewhere.
Another example of a portable device is disclosed in U.S. Pat. No. 4,818,348 issued to Stetter. Although this portable device is more sophisticated than the previous example, it still has many limitations. In this instance, the device is capable of identifying a gas or vapor, but the applications are quite limited because of sensor architectural limitations. The sensors making up the array are permanently fixed, and thus, the number and variety of analytes and gases that the device is capable of identifying is quite small. Moreover, because the analyte or vapor being identified interacts with each sensor of the array in a different amount, the reproducibility and stability of the device is quite limited. These limitations affect the device's accuracy in identifying unknowns.
Concurrent with the development of better detection techniques for detecting analytes, there is an emerging need to develop methods and devices to efficiently transmit the collected sensory data for swift analysis. Under some prior customary practices, the sensory data were first captured and then physically transported back to a laboratory or some other designated facility for subsequent analysis. Very often, analyses on these data would not be performed until a substantial period of time had elapsed and consequently their results would not be available for hours, days or even weeks.
Timely transmission and analysis of sensory data for detected analytes have tremendous applications in a variety of areas. There are many instances where it is desirable to obtain results on the analysis of the sensory data in a timely manner. For example, in a hospital/medical environment, it would be greatly beneficial if data collected from a patient can be transmitted quickly to a laboratory to determine the cause of the patient's ailments thereby allowing the doctors to prescribe the necessary treatment without any undue delay. In a similar example, medical and other related data from home monitoring devices can be collected and transmitted swiftly to the appropriate hospitals and/or authorities to allow them to provide better response to home emergencies. In another example, in environments where the presence of certain substances can potentially lead to dangerous conditions, such as a gas leak in a foundry or a home, the swift transmission of sensory data for analysis can very well preempt an impending disaster. Clearly, there are many other situations that one could think of where the efficient transmission of sensory data will generate tremendous benefits. Hence, it would be desirable and beneficial to create a method and system that is capable of timely transmitting sensory data for analysis.
In addition to the need to have timely transmission of sensory data, there is a need to provide easy access to the collective data compiled for the known analytes. The results of any detection analysis are only as good as the data that are available for comparison. At the present time, various analytes have been identified and data therefor have been compiled and stored all over the world. Perhaps, due to the voluminous amount of data that are available, these data are generally not centralized in any one particular depository but are instead separately stored at different facilities. The segregation of these data, therefore, renders a complete and accurate analysis more difficult. Hence, it would be desirable to have a method and system that is capable of providing better access to these available data thereby allowing more accurate analyses to be performed. The present invention fulfills these and other needs by providing a method and system of detecting, transmitting, storing and retrieving sensory information over a computer network.
SUMMARY OF THE INVENTION
The invention relates generally to a sensing apparatus (also referred to as an electronic-nose or e-nose device). The apparatus is compact and, in certain embodiments, configured to be a handheld device. The e-nose device can be used to measure or identify one or more analytes in a medium such as vapor, liquid, gas, solid, and others. Some embodiments of the e-nose device includes at least two sensors (i. e., an array of sensors) and, in some other embodiments, about two to about 200 sensors in an array and preferably about four to about 50 sensors in the array. The device of the present invention can detect sensory data such as physical, chemical, taste, olfaction, optical olfaction, optical parameters or combinations thereof
The e-nose device is versatile and meets the needs of a wide range of applications in various industries. In certain embodiments, the device is designed as a slim handheld, portable device with various functionalities. In another embodiments, the device is designed as a portabl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus, systems and methods for detecting and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus, systems and methods for detecting and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus, systems and methods for detecting and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2855845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.