Apparatus methods and compositions for placing additive...

Refrigeration – Processes – Assembling – charging – or repairing of refrigeration producer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S085000, C062S114000

Reexamination Certificate

active

06438970

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods of dehydrating, passivating, sealing of refrigeration systems and a method for delivering combination of a binding azeotrope of methanol and cyclohexanone, a drying agent, a moisture activated metal treatment and rubber rejuvinating compound into a single container.
The present invention generally relates to the maintenance of air conditioning or refrigeration systems and, in a preferred embodiment thereof, more particularly relates to apparatus and methods for placing an additive fluid in to the refrigerant circuit of an air conditioning system.
In the typical air conditioning or refrigeration system it is often necessary to place an additive fluid (normally a liquid) into the refrigerant circuit portion of the system to maintain the performance of the system at a satisfactory level. Examples of additive fluids placed in refrigerant circuits include compressor oil, stop-leak liquid, acid neutralizers, drying agents, and ultraviolet colored leak-finder liquid.
Additive fluids of these and other types are conventionally placed in refrigerant circuits by one of four methods—namely, (1) the refrigerant circuits by one of four methods (2) the additive fluid is placed in a container along with pressurized refrigerant and is expelled with the pressurized refrigerant into the circuit; (3) the additive fluid is placed in an in-line storage device, and pressurized refrigerant is flowed through the storage device to force the additive fluid into the circuit along with the pressurized refrigerant; or (4) the additive fluid is injected into the circuit using a mechanical piston to force the fluid into the circuit.
These conventional techniques carry with them certain known problems, limitations and disadvantages. For example, to simply open the refrigerant circuit and pour the additive in can undesirably cause release of refrigerant to the atmosphere, and can also undesirably introduce contaminating air into the circuit. Packaging an additive fluid in a container with pressurized refrigerant to be forcibly injected into the circuit is also undesirable due the expense of adding refrigerant to the container as a propellant, the safety concerns inherent in a pressurized container structure, and the need to match the refrigerant propellant with the type of refrigerant within the circuit. Placing the additive fluid in an in-line device requires that the refrigerant forced through the device match the refrigerant in the circuit to avoid contamination of the circuit. Injecting additive fluid into a refrigerant circuit using a mechanical piston device tends to be a somewhat cumbersome task requiring specialized packaging and/or equipment.
Recently, severe restrictions by the U.S. Government has been placed on use of chlorofluorocarbons (CFCs) due to environmental problems which are as a result of the destruction of stratospheric ozone. In addition, CFCs have been labeled as environmentally unsafe in many countries worldwide. As a result, proposed alternative substances which can be substituted for CFCs in various applications have been and are being developed. Among them are several new proposed hydrofluorocarbons (HFCs). A substitution which is being used is HFC-R134a and related compounds. These materials are being sold as a substitutes for CFC as a refrigerant liquid for CFC as refrigeration fluids. These replacement materials, while not ozone-depleting continue to contribute in part to the greenhouse effect. Their use and escape into the atmosphere is the subject of the EPA's Significant New Alternatives Programs, which limits the use of fluroinated compounds as alternatives for ozone-depleting chemicals.
The HFC replacement fluids are generally not as efficient as CFCs and require new types of additives including fluids, sealants, metal and rubber sealants as well as dehydrates and others. In addition, redesign of compressive-evaporative refrigeration and other systems using the HFCs has been necessary. The newer working fluid refrigerants exhibit different soluabilities than CFCs, and are not mixable with well known lubricants in CFC systems as well as other additives. For example, in a modern system using these compounds in cooperation with known lubricants causes hydrolysis of the lubricating esters in a chemical reversion process. Further, other chemical additives in the new environmental partially safe system cause additional metal and rubber leakage which, again, can bring on additional problems for the FPA and the environment.
Leaks allow refrigerants and other working fluids to escape into the atmosphere, contaminating the environment and decreasing the efficiency and cooling capacity of the unit. If large amounts of cooling working fluids such as refrigerants escape, the system may overheat and the service life of the unit will thereby be shortened. Further, the unit may suffer mechanical failure from the loss of the working fluid. In general, leaks in heating and cooling systems also decrease the heat transfer efficiency of these systems.
Water in all types of compressive-evaporative systems decreases the system efficiency as a result of water's high heat of vaporization and high heat capacity. The high heat of fusion of water decreases the efficiency of a compressive-evaporative system by giving off heat in evaporation cycles as the water freezes. The resulting ice crystals can also block orifices in expansion valves and cause such systems to malfunction.
A need continues to exist in the art for a method for sealing leaks in refrigeration, air conditioning, heating and ventilation and related systems and for the complete dehydration of the systems. More importantly, there is a need that exist in the prior art for the addition in a one-step application of a drying agent, a moisture activated metal treatment and a rubber rejuvinating compound in a single container in combination with a binding azeotrope.
As can readily be seen from the foregoing, a need exists for improved apparatus, methods for placing additive fluids and said additive fluids into a refrigerant circuit. It is to this need that the present invention is directed.
SUMMARY OF THE INVENTION
In carrying out principles of the present invention, in accordance with a preferred embodiment thereof, a specially designed vessel or canister is provided for use in placing an additive fluid, representatively an additive liquid, into the refrigerant circuit of an air conditioning or refrigeration system, representatively an automotive air conditioning system. In a preferred embodiment thereof, the vessel has an interior communicatable with a suction line portion of the refrigerant circuit, the vessel interior being partially filled with an additive liquid, being partially evacuated to a vacuum pressure less than that of the suction line portion during operation of the air conditioning system, and being substantially devoid of refrigerant.
According to a first method of utilizing the partially evacuated vessel, the interior of the vessel is initially communicated with the interior of the suction line portion during operation of the air conditioning system, representatively using a refrigerant recharge hose assembly, whereupon the greater vacuum pressure in the suction line portion of the refrigerant circuit draws the additive liquid into the suction line portion.
According to a second method of utilizing the partially evacuated vessel, the refrigerant circuit is emptied and a vacuum pressure is created therein which is greater than the vacuum pressure within the vessel. The vessel is then communicated with the interior of the refrigerant circuit, representatively using a refrigerant recharge hose assembly, whereupon the greater vacuum pressure within the emptied refrigerant circuit draws the additive fluid into the refrigerant circuit.
Accordingly to a third method of utilizing the partially evacuated vessel, the interior of the vessel is initially communicated with the interior of the suction line portion, representatively using a refrigerant recharge hose a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus methods and compositions for placing additive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus methods and compositions for placing additive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus methods and compositions for placing additive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2878558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.