Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2002-06-05
2003-11-18
Abrams, Neil (Department: 2839)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C439S049000, C361S777000
Reexamination Certificate
active
06650548
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electrical socket device and a circuit board device. More specifically, the present invention relates to a product commonly known as a solder-less breadboard and a product commonly known as a prototype circuit board, and particularly to a new connection structure that, when used in conjunction with either or both of these prior boards, creates an entirely new method of interfacing electronic circuits that appears to be far superior to any other method available to date.
2. Description of the Related Art
All solder-less breadboards and breadboarding systems available to date are substantially similar to the breadboard design disclosed in U.S. Pat. No. Des. 235,554. This solder-less breadboard is a reusable platform on which temporary electronic circuits can be built, tested, modified and evaluated without having to solder the various electronic components and wires in place. It comprises an insulated electrical socket, or sockets that contain spring clip electrical connectors with a plurality (usually five) contacts spaced on 0.1 inch centers that individual pins or leads of electronic components and wires plug into. There are two basic parts. The first is a distribution strip, which contains one or two rows of connectors running in the same direction as the row that are all electrically connected together, such that it distributes an electrical signal or power to every contact in the row from end to end, with each row electrically isolated from each other, thus distributing two separate voltages or signals. The second is a terminal strip, which typically contains two rows of connectors each having five contacts on 0.1 inch centers running perpendicular to the direction of the row. All the connectors are parallel to each other and electrically isolated from each other. The two rows are electrically isolated from each other and the nearest contacts in each row are spaced on 0.3 inch centers, such that integrated circuits in DIP packages can be plugged into the center of the terminal strip, with each pin plugging into a separate connector. This leaves four available contacts running perpendicular to the integrated circuit and parallel to each other to carry signals to or from the pins. A terminal strip is placed between two distribution strips, such that power or signals run parallel to each other on opposite sides of the terminal strip and perpendicular to the signals on the terminal strip, such that power can be applied to any desired connector on the terminal strip by a short piece of wire from the closest contact on the distribution strip. Wire jumpers can be used to connect signals from any pin on any integrated circuit to any other pin. All other components required by the circuit such as transistors, SCRs, TRIACs, LEDs, etc. must also be plugged into other unused connectors on the terminal strip and then signals run to or from their pins which are interconnected by resistors, capacitors or wires. While there have been many embodiments of this design over the years, including various lengths of the individual pieces, and various mixing and matching of the various pieces of various lengths to create various shapes, sizes and larger capacity systems, there have been no real changes to the functionality of the design. That is to say that the method of placing components and making the required electrical connections between the components in order to build a circuit has not changed. While all of the various embodiments of the design are in themselves extremely useful tools they also all present the user with certain challenges and frustrations that are inherent in the design.
The solder-less breadboard is designed to accommodate integrated circuits in dual inline packages as well as resisters, capacitors, inductors, diodes, transistors and other various components in 3, 4 and more pin packages. The first problem arises out of the fact that 3 and 4 pin devices must be placed in the terminal strip area. This takes up valuable room which lessens the number of integrated circuits that can be placed on the board.
The second problem arises when the various signals on various pins of the integrated circuits need to be interconnected through resistor voltage dividers or resistor/capacitor networks, both of which are common and normal when working with operational amplifiers, timers and mono-stable devices. Again the interconnections of these associated components must be made in the terminal strip area taking away even more room for integrated circuits.
The third problem arises out of the fact that the signal pins on the integrated circuits are practically never in an order that is compatible with pin order of the 3 pin devices. This results in a jumble of crisscrossing interconnecting wires that make the circuit hard to follow and increases the probability of incorrect connections being made in the circuit. This also makes it much more difficult to troubleshoot the circuit and make modifications to the circuit as needed.
The historical solution to these problems has been to use a bigger breadboard. While this solution is very desirable to the breadboard manufactures, it is not cost effective to the user, from which arises the fourth problem: it results in building an extremely large circuit that for obvious reasons is more difficult to transfer to a smaller more usable prototype circuit board for rigorous testing or to a suitable circuit board for the final intended use of the circuit.
The fifth problem arises out of the fact that there is no standardized set of size for size, connection for connection compatible prototype circuit boards available that would allow the user to quickly, easily and accurately transfer the circuit to a circuit board for rigorous testing or final building.
The sixth problem arises from the fact that existing solder-less breadboards and prototype circuit boards are not available in sizes that are compatible with existing standard sized enclosures that are readily available and economically affordable.
The seventh problem arises from the fact that in an engineering environment every new circuit requires a draftsperson to formalize a new schematic, then the new schematic is sent to CAD/CAM to create artwork for a new circuit board design. Then the artwork is used to make a new circuit board, which then has to be drilled and sent back to engineering in order to build a prototype for testing. Any result of testing that requires a change in the circuit also requires this entire process to be repeated. This can be a long process, requiring weeks, months, or even years, to complete a final working prototype.
All of these problems are time consuming and frustrating to the user. When companies are fighting the clock to get their products on the market, time can be more than money, it can be the difference between failure and survival.
Examples of analogous and non-analogous previously proposed breadboards are disclosed in the following analogous and non-analogous U.S. Patents.
Patentee
U.S. Pat. No.
3,205,469
Frank et al.
4,039,236
Schepler
4,129,349
von Roesgen
4,522,449
Hayward
4,772,864
Otto et al.
4,791,722
Miller, Jr.
4,907,127
Lee
5,014,163
Lin
5,309,327
Slater
5,339,219
Urich
Des. 235,554
Portugal
Published Patent Application
2002/0012236
DiMarco
BRIEF SUMMARY OF THE INVENTION
The breadboard design of the present invention solves the problems described above. Accordingly, it is a first aspect of the present invention to provide a new method of interfacing electronic circuits by use of a new system of solder-less breadboard devices and new prototype circuit board devices that contain a new apparatus, while at the same time making the physical dimensions of the devices, with respect to both size and mounting hole, compatible with readily available standard size enclosures and also to provide a new system of add on devices that will allow existing breadboards and breadboard systems to be upgraded in order to allow them to support a new method for interfacing electronic ci
Abrams Neil
Vigil Thomas R.
Welsh & Katz Ltd.
LandOfFree
Apparatus, method and system for interfacing electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus, method and system for interfacing electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus, method and system for interfacing electronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3126888