Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2001-02-14
2004-06-15
Mizrahi, Diane D. (Department: 2175)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000
Reexamination Certificate
active
06751620
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to methods and apparatus for viewing information. More particularly, in one embodiment, the invention is directed to a system for enabling the user to view, search through and interact with information through a virtual environment, which is related to a selected physical paradigm, in an unrestricted manner.
BACKGROUND OF THE INVENTION
As computing technology has evolved, users have been able to access increased amounts of information from an ever-expanding universe of data sources. One example of this is the World Wide Web (hereafter, “the Web” or “Web”). Information from a myriad of sources is available to virtually anyone with a device that is connected to a network and capable of “browsing” the latter. A computer connected to the Internet and executing a browser program, such as Microsoft Internet Explorer™ or Netscape Navigator™, is one typical implementation of this.
Computing devices have become smaller and more powerful, thereby providing the user with unprecedented access to desired information when mobile. For example, wireless telephones and personal digital assistants (“PDAs”) equipped with wireless modems, when provided with the appropriate software, also permit the user to browse a network and look for information of interest.
Despite these advances in hardware and software, the sheer volume of information available can overwhelm the user. Graphical user interfaces that provide multiple views of related information (such as frames, panes, or screens) are prevalent in commercially available software products. These interfaces tend to facilitate user interaction with information presented. Unfortunately, current multi-view interfaces are severely limited by the lack of intuitive, hierarchical relationships between views, view placement and layout, and view presentation. These related views are typically ad hoc in their interaction and functionality. That is, there is little user level control over the relationships between views, view placement and layout, and view presentation.
The default behavior in a Web browser is to follow a link by replacing the current browser context. The Web page author can change this default behavior on a link-by-link basis. For example, HTML-based frames can be created and targeted programmatically by writing HTML or JAVA™ Script code. However, the user has no way to change the preprogrammed targeting. This statically defined “one-size-fits-all” behavior may be frustrating and problematic in some common browsing scenarios.
An example of the foregoing involves browsing the set of results returned by a search engine. Users typically want to explore several promising sites listed in the page of search results. The typical interaction is to follow a link, look at the page, and then actuate the back button to redisplay the search results. There are disadvantages to this ping-pong approach. First, the user loses context because the search results and followed link are not visible at the same time. Second, the constant switching of contexts requires extra navigation steps.
Another common interaction technique is to use a mouse to right-click on the link, and to choose open in new frame from the context menu. This causes the link to expand in a new frame. One deficiency in this spawning approach is that a large number of temporary frames are explicitly opened and used only briefly before being closed. This problem can be significant when small displays are used, such as those found on wireless telephones and PDAs. In addition, a cumbersome pop-up menu is typically used for each link traversal.
From the foregoing, it is apparent that there is still a need for a way to view large amounts of information in an efficient manner. The information should be arranged using a hierarchy that is intuitive to the user. It should be presented in an interface that is easy to navigate, but does not overwhelm the display device or frustrate the user due to loss of context or an excessive number of navigational steps.
SUMMARY OF THE INVENTION
In addressing the deficiencies of prior systems, the invention provides improved methods and apparatus for viewing information. In one embodiment, the invention provides, from two-dimensional display, a user's viewing perspective of a three-dimensional virtual space in which discrete data objects are located. In a further embodiment, the invention creates an array of vector elements or two-dimensional matrix of pixels for a camera viewing perspective in a three- or more dimensional space of objects. The objects are assigned to coordinates in the virtual space and the visual representation of each data object is a function of the user's viewing perspective in the virtual space. According to one feature, the user controls a virtual camera, and this viewing perspective point has coordinates. According to another feature, the user dynamically controls the viewing perspective with variable velocity and acceleration. The appearance of data objects within the viewing perspective is rendered in the user interface. In one embodiment, the data objects are obtained from crawling data sources. According to one feature, the invention breaks down boundaries between sets of data objects by dividing the sets into smaller subsets and displaying those smaller subsets. According to a further aspect, the invention displays and delivers data as function of space and time. According to one feature, the closer the data is to the user's viewing perspective in virtual space, the sooner it is downloaded for display to the user.
The system relates data objects hierarchically using a spatial paradigm. A spatial paradigm can include abstract, mathematical and physical paradigms. In one embodiment, the invention provides a system that enables the user to view displayed information in a way that is comparable to a selected physical paradigm. Example categories of physical paradigms can include information paradigms, entertainment paradigms, service paradigms and/or transaction paradigms. Example physical paradigms include, but are not limited to, finance, education, government, sports, media, retail, travel, geographic, real estate, medicine, physiology, automotive, mechanical, database, e-commerce, news, engineering, fashioned-based, art-based, music-based, surveillance, agriculture, industry, infrastructure, scientific, anatomy, petroleum industry, inventory, search engines and other like physical paradigms. By presenting information to the user in a way that more closely mimics a physical paradigm, the system provides an intuitive mechanism for the user to view, interact with and operate on displayed information.
According to one embodiment, the system provides a template for a database. The template relates to a physical paradigm, and defines hierarchical relationships between data objects stored in the database. The system profiles data sources and extracts data objects associated with the physical paradigm from at least one of those data sources. Data sources can include, for example, legacy databases, Internet Web servers, substantially real-time data sources, file systems, files, storage devices, simulations, models or the like. Data sources can also include, for example, live information feeds from any source, such as those relating to news, scientific or financial information. A data source can also be an edge server or a distributed cache server for distributing Web content closer to the user. In another embodiment, the system provides a plurality of templates. In a further embodiment, results from a search engine are arranged for the user according to a selected template.
In one embodiment, the system organizes and stores the data objects associated with the physical paradigm in the database according to hierarchical relationships defined by the template. The system displays an appearance of a subset of the data objects associated with the physical paradigm in a virtual representation. To display the appearance, the system employs the selected data objects and the templat
Guzman Adriana
Orbanes Julian
Fish & Richardson P.C.
GeoPhoenix, Inc.
Mizrahi Diane D.
LandOfFree
Apparatus for viewing information in virtual space using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for viewing information in virtual space using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for viewing information in virtual space using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310174