Apparatus for treating vascular occlusions

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S104000, C606S159000

Reexamination Certificate

active

06508825

ABSTRACT:

FIELD OF THE INVENTION
The invention is generally directed to medical devices and catheters designed for the treatment vascular occlusions. More particularly, the invention is directed to cardiovascular catheters having the ability to sufficiently fracture, disrupt or displace a vascular occlusion in order to allow a guidewire to pass through the occlusion within the lumen of a blood vessel. The invention is further directed to a vascular catheter for crossing a substantially occluded blood vessel by disrupting the occlusion to provide a pathway that permits the passage of a guidewire or interventional cardiovascular device such as a stent or other catheter apparatus.
BACKGROUND OF THE INVENTION
Medical science has long sought effective treatments for disease states that cause stenosis (narrowing or obstruction) of the lumen (interior passage of the artery) of an artery. This condition, known generally as a vascular occlusion, is found in patients suffering from the disease of atherosclerosis (an accumulation of fibrous, fatty or calcified tissue in the arteries). Symptoms of arterial occlusion include hypertension (high blood pressure), ischemia (deficiency of circulation), angina (chest pain), myocardial infarction (heart attack stroke, or death. An occlusion may be partial or total, may be soft and pliable or hard and calcified, and may be found at a great variety of sites in the arterial system including the aorta, coronary and peripheral arteries.
Of particular interest to cardiac medicine are the often disabling or fatal occlusions occurring in the coronary arteries (arteries supplying the heart). Traditionally, coronary artery occlusions have been treated by performing coronary bypass surgery. This is a procedure in which a segment of the patient's saphenous vein may be taken from the patient's leg and is grafted onto the affected artery at points proximal (upstream) and distal (downstream) to the occluded segment. While the procedure can improve the patients quality of life through reduced ischemia and angina, it is major surgical procedures with significant morbidity and mortality risks and a long convalesce period. Consequently, it is contraindicated for a significant portion of the patient population due to age and other factors. Moreover, in a significant percentage of patients, the saphenous vein graft may become occluded over the passage of time due to same disease processes which caused the original occlusion. If the patient has another saphenous vein, a second bypass procedure may be performed, once again incurring the risk, cost and prolonged hospitalization of this procedure. In fact up to 25% of bypass patients may require repeat surgery.
Newer, minimally invasive procedures are now preferred in the treatment of arterial occlusions. These procedures often include the use of long, thin, and highly flexible devices known in the art as catheters. During the procedure, the catheter is introduced into a major artery through a small arterial puncture made in the groin, upper arm, or neck, and is advanced and steered into the site of the stenosis. At the distal end of the catheter, various devices have been developed for operating upon the stenosed artery. For example, the more popular minimally invasive procedures include percutaneous transluminal coronary angioplasty (PTCA), directional coronary atherectomy (DCA), and stenting. PTCA employs a balloon to mechanically dilate the stenosis. In PTCA, a steerable guidewire is introduced and advanced under fluoroscopic observation into the narrowed artery and past the area of stenosis (e.g. blockage). Next, a balloon-tipped catheter is advanced over the guidewire until it is positioned across the stenosed segment. The balloon is then inflated, separating, fracturing or otherwise deforming the atheroma so as to enlarge the narrowed lumen of the artery sufficiently to increase blood flow to a previously ischemic or near ischemic section of the myocardium. Directional coronary atherectomy is another minimally invasive procedure that has been developed, a catheter containing a cutter housed in its distal end is advanced over the guidewire into the stenosed segment. The housing is urged against the atheroma by the inflation of a balloon, so that part of the atheroma intrudes through a window in the side of the housing. Under fluoroscopic observation, the cutter is used to shave away the atheroma. The shavings are collected in the nosecone of the housing and withdrawn along with the catheter. Similarly, stenting is another current procedure in which a wire framework, known as a stent, is compressed and delivered a balloon catheter. The stent is positioned across the stenosed segment of the artery. The balloon is inflated, dilating the stent and forcing the stent against the artery wall. The hoped-for outcome is that the stent will hold the arterial lumen open for a prolonged period. Frequently, a stent is placed in an artery immediately following PTCA or DCA. The catheters selected for many of the aforementioned procedures are known as “over-the-wire catheters.” These catheters depend upon the positioning of a guidewire, which typically has a flexible portion at its distal end for steering. Over-the-wire catheters cannot be positioned adjacent the stenosis to carry out current procedures until the guidewire traverses or has been advanced across the stenosed arterial segment. Thus, where the occlusion is too severe to be crossed by a guidewire or where there is not enough room for the balloon, cutter, or stent delivery catheter, neither PTCA nor DCA nor stenting can be effectively performed.
Unfortunately, vascular occlusions often contain extremely hard, calcified tissue that forms an impenetrable barrier against the simple advancement of a guidewire across the occlusion. Even a less than total occlusion may contain complex structures which may trap or divert the steering end of the guidewire. Thus, the guidewire may not completely cross the occlusion, and may become diverted into the subintimal space between the atheroma and the arterial wall, or even become buried in the atheroma. In either case, the guidewire cannot be properly positioned across the stenosis to guide a balloon or cutting element. In such cases, bypass surgery may be necessary with the associated cost, risks, and recovery period. Thus, in patients suffering from severe or total arterial occlusion, it is preferable to do what has been difficult or impossible in the past, to open the severely or totally occluded artery itself, rather than by performing a bypass. If a guidewire and working catheter can be passed through or around the atheroma, the occlusion can be treated by a number of interventional procedures include PTCA, DCA, stenting, site-specific drug and radiation delivery or a combination of these different therapies.
Accordingly, it would be medically advantageous to circumvent a vascular occlusion. Appropriate devices and procedures for crossing the occlusion should be selected without perforating the blood vessel or artery being treated, an extremely serious and even life-threatening consequence. A physician will generally not use a system which would be unsafe, nor would patients want a physician to use such a system. Therefore, solutions to the problem of crossing a vascular occlusion such as an atheroma should be safe, and in many instances, include a system of guidance for the device to bypass such an occlusion. There has been a long felt need in the practice of interventional cardiology and radiology for a reliable guidance system for these types of vascular devices. As understood by those in the art, the device often travels through a complex, tortuous vascular anatomy before it even gets to the occlusion. Then the occlusion itself often has a irregularly shaped (e.g. eccentric) morphology. Attempting to cross such an occlusion without reliable imaging of the adjacent vasculature is dangerous. For example, it is easy to dissect the tissues of the arterial wall instead of the occlusion, thereby creating a false lumen and possibly p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for treating vascular occlusions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for treating vascular occlusions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for treating vascular occlusions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062852

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.