Apparatus for treating fluids

Liquid purification or separation – Tangential flow or centrifugal fluid action – Multiple cyclone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S188000, C210S512100, C210S738000, C210S787000, C241S005000, C241S039000, C366S162400, C366S162500, C366S173200, C417S171000, C417S194000

Reexamination Certificate

active

06649059

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and apparatus for treating fluids and, more particularly, but not by way of limitation to an improved fluid delivery system for transporting a fluid to a vortex nozzle assembly housed therein.
2. Description of the Related Art
U.S. Pat. No. 4,261,521 discloses a vortex nozzle assembly constructed with a pair of vortex nozzles positioned within a housing in opposed relationship. The housing maintains the axial alignments of the nozzles and their respective nozzle exits and, further, introduces fluid into the vortex nozzles. The fluid enters an interior tapered vortex tube of each vortex nozzle through a straight, round, port tangent to a toroidal cavity. The toroidal cavity is adjacent to a large end of the tapered, conical vortex tube, which is normal to the nozzle axis. The fluid departs from this toroidal section and progresses spirally out toward a nozzle exit as more fluid continuously enters the port. The transition from the toroidal shape to the conical shape is critical. If the inside edge of the cone is tangent to the outside of the toroid, the fluid exits too quickly to form complete coverage of the interior of the vortex tube. Conversely, if the inside edge of the cone starts at the bottom quadrant of the torrous, the exiting fluid interferes with the incoming flow and causes much turbulence.
As fluid is forced spirally out each vortex tube, centrifugal energy flattens a circular section of fluid against the side of the tapered vortex tube. This action accelerates the fluid as it spirals out toward the exit, creating a void inside the vortex tube chamber. When the fluid exits the walls of the vortex tube, it accelerates radially forming a hollow fluid cone. The hollow fluid cone from one vortex nozzle impacts with the hollow fluid cone from the other vortex nozzle inside the housing, which forms a liquid lined, closed chamber. This closed chamber develops a substantial vacuum due to the void caused by the centrifugal energy of the vortex. The energy from the impact of the two hollow fluid cones in the presence of this substantial vacuum effects changes to the fluid.
It is desirable and beneficial for the fluid to form a uniform and thin film, thus exposing the maximum amount of the surface area of the fluid to the effect of the vortex chamber. Additionally, this thin film of fluid becomes the interior liquid wall of the vortex reaction chamber. If the fluid is not uniformly distributed down the walls of the tapered vortex tube when it exits the nozzle, instabilities will develop in the impact pattern between the two nozzles leading to inefficiencies in nozzle performance. These irregularities in fluid distribution are inherent when one starts with a single, circular fluid cross-section entering normally to the axis of the nozzle and attempts to develop that fluid into a uniform, thin-filmed annular section.
Increasing the length of the vortex tube aids in the uniform film development by allowing the fluid more time to develop a stable flow pattern; unfortunately, the additional length greatly increases the frictional losses. These frictional losses lessen the impact energy when the two hollow fluid cones exiting the nozzles collide, thereby limiting the efficiency of the nozzle. The added length also decreases the centrifugal energy available, as the length must be added to the large end of the vortex tube. This makes the toroidal section larger and decreases the rotational speed for a given inlet velocity.
U.S. Pat. No. 5,435,913 adds another inline vortex tube to each nozzle to eliminate a singular entrance port. This has some beneficial effect, particularly when the paired vortex tubes are properly sized and positioned relative to each other. However, properly sizing and positioning of the tandem design nozzle pairs can prove challenging. One must carefully determine the relative sizes and placements as the vortex tube can interfere rather than amplify each other.
Accordingly, there is a long felt need for an improved fluid delivery system for transporting a fluid to a vortex nozzle assembly housed therein. The improved fluid delivery system more efficiently transports fluid to permit a more uniform film thickness in an individual vortex nozzle of the vortex nozzle assembly. The improved fluid delivery system further provides greater application design latitude but in a less complicated arrangement as was accomplished with either the single entry or the tandem nozzle design.
SUMMARY OF THE INVENTION
In accordance with the present invention, an apparatus for treating fluids includes a pump, a housing including therein a first vortex nozzle positioned in opposed relationship to a second vortex nozzle, and a manifold that delivers a flow of fluid from the pump and to the housing. The pump includes an inlet coupled with a fluid source and an outlet coupled with the manifold. The pump resides on a pump support adapted to permit rearward and pivotal movement of the pump. In addition, the pump may be oriented vertically to permit the staging of pump impellers. A frame that supports the housing also supports the pump to prevent loading of the pump by plumbing connecting the fluid source to the pump.
The manifold receives a fluid flow from the pump and divides the fluid flow into a first fluid flow and a second fluid flow. Accordingly, the manifold includes an inlet coupled with the outlet of the pump, and a flow divider coupled with the inlet that actually divides the fluid flow into the first fluid flow and the second fluid flow. The manifold further includes a first elbow coupled to the flow divider and a coupling coupled with the first elbow, whereby the first elbow and the first coupling facilitate delivery of the first fluid flow to the housing. The manifold still further includes a second elbow coupled to the flow divider and a second coupling coupled with the second elbow, whereby the second elbow and the second coupling facilitate delivery of the second fluid flow to the housing.
The housing includes a first inlet that receives the first fluid flow and a second inlet that receives the second fluid flow. The housing defines a first cavity that delivers the first fluid flow to the first vortex nozzle such that the first vortex nozzle receives fluid therein and imparts a rotation to the fluid, thereby creating a first rotating fluid flow. Similarly, the housing defines a second cavity that delivers the second fluid flow to the second vortex nozzle such that the second vortex nozzle receives fluid therein and imparts a rotation to the fluid, thereby creating a second rotating fluid flow. The first and second vortex nozzles and the housing define a collision chamber where impingement of the first rotating fluid flow with the second rotating fluid flow occurs prior to exit of the fluid from an outlet of the housing.
In a method of treating a fluid, a first vortex nozzle is positioned in opposed relationship to a second vortex nozzle. A first fluid flow is inlet into a cavity surrounding the first vortex nozzle, and fluid from the first fluid flow is inlet into the first vortex nozzle to create a first rotating fluid flow. Similarly, a second fluid flow is inlet into a cavity surrounding the second vortex nozzle, and fluid from the second fluid flow is inlet into the second vortex nozzle to create a second rotating fluid flow. Finally, the first rotating fluid flow is impinged with the second rotating fluid flow in a collision chamber.
In a method of manufacturing a vortex nozzle adapted to provide vacuum measurements, a conduit is inserted through an aperture in a housing having the vortex nozzle therein. One end of the conduit is placed in a cavity of the vortex nozzle, and a self-actuating seal is secured over the aperture.
It is therefore an object of the present invention to provide an apparatus for treating fluids with sound dampening qualities.
It is another object of the present invention to provide an apparatus for treating fluids that is easy to service.
It is furth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for treating fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for treating fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for treating fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182125

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.