Apparatus for thermally processing semiconductor wafer

Electric heating – Heating devices – Combined with container – enclosure – or support for material...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S405000, C118S724000, C392S416000

Reexamination Certificate

active

06184498

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of evaluating a semiconductor wafer (hereinafter referred to as a wafer). More specifically, the present invention relates to a method of evaluating a semiconductor wafer which can provide an index as to whether generation of a slip line is likely or not. Further, the present invention relates to a method of thermally processing the semiconductor wafer while preventing generation of a slip line, based on the data obtained by the method of evaluation. The present invention also relates to an apparatus for thermally processing the semiconductor wafer improved to prevent generation of the slip line, based on the data obtained by the method of evaluation.
2. Description of the Background Art
FIG. 1
shows steps of manufacturing a general semiconductor device. The manufacturing process of a semiconductor device includes the steps of preparing a wafer, forming an active layer on the wafer, and fabricating a device. In order to form the active layer, thermal processing, which is epitaxial growth (600-700° C.) or activation annealing (up to 800° C.) after ion implantation, are performed. The step of fabricating the device includes the steps of photolithography, forming electrodes and etching.
Now, in the aforementioned thermal processing, it is recognized that the wafer is subjected to plastic deformation and, as a result of plastic deformation, slip lines are generated on the surface of the wafer. A slip line is considered a step such as shown in FIG.
2
. Such a slip line decreases production yield of the devices, presenting a significant problem.
To this date, there has never been an index as to whether generation of a slip line (hereinafter simply referred to as a slip) is likely or not in a wafer. Whether a slip is generated or not, that is, resistance to slip formation of a wafer is determined qualitatively by actually performing epitaxial growth, activation annealing and so on in individual thermal processing furnace. The slip resistance could have been found qualitatively for each thermal processing furnace. However, conditions of thermal processing differ from one furnace to another. Accordingly, it has been frequently experienced that slips are generated in a certain thermal processing furnace but not generated in another.
In other words, it has been impossible to determine slip resistance of wafers consistently and quantitatively, and the slip resistance cannot be known until the wafer is actually thermally processed.
As to residual stress of a wafer, residual strain (the strain multiplied by an appropriate elastic constant is the stress) has been evaluated by a photo-elastic method. However, by this method, only an absolute value of the magnitude of the residual strain could be found, and the direction of the residual strain (that is, the direction of the residual stress) could not be determined.
As already described, a slip is considered a macroscopic step generated by formation of a slide which is caused by a dislocation generation and multiplication in the wafer when the stress during thermal processing exceeds the yield stress of the wafer. This may be the case in a wafer without dislocation such as a silicon (Si) wafer. The concept is basically the same in a wafer having dislocations such as Gallium Arsenide (GaAs). However, it is not known whether the dislocation which causes a slide for the first time is newly generated by the stress or an already existing dislocation that slides.
The stress during thermal processing includes thermal stress caused by temperature difference in the plane of the wafer, and dead weight stress caused by the weight of the wafer itself. More specifically, a slip may be generated when a composite stress of thermal stress and dead weight stress exceeds the yield stress of the wafer. Therefore, this yield stress may be used as an index representing slip resistance. In the following, this will be referred to as critical stress for slip defect generation.
The critical stress for slip defect generation can be found by changing the stress applied to the wafer during the process, comparing the presence or absence of actual slips and then finding the critical stress applied when the slip is generated. However, in an actual thermal processing apparatus, it has been impossible to control and change the stress applied to the wafer, and calculation of the applied stress itself has been difficult.
Generation of slips can be significantly reduced when temperature during thermal processing of the wafer is increased or decreased slowly. The reason for this is that thermal stress significantly increases during increase or decrease of temperature (temperature difference in a wafer increases), and the temperature difference in a wafer becomes smaller when the temperature is increased or decreased slowly. However, in order to increase throughput of the wafers, the speed of increasing and decreasing temperature should be as fast as possible while preventing generation of the slips.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a method of evaluating a semiconductor wafer which can provide an index as to whether generation of a slip is likely or not.
Another object of the present invention is to provide a method of thermally processing a semiconductor wafer improved to prevent generation of a slip based on the data obtained by the method of evaluation.
A still further object of the present invention is to provide an apparatus for thermally processing a semiconductor wafer improved to prevent generation of a slip.
Another object of the present invention is to provide a method of evaluating a semiconductor wafer which can determine the magnitude and the direction of residual stress of a wafer.
A still further object of the present invention is to provide a method of thermally processing a semiconductor wafer in which the magnitude and the direction of residual stress of a wafer are determined and based on the data, the wafer is processed while preventing generation of a slip.
In the method of evaluating the semiconductor wafer in accordance with a first aspect of the present invention, the temperature distribution in the plane of a semiconductor wafer is changed at a prescribed temperature, and the condition of temperature distribution which causes a slip line is detected, whereby a range of tolerable thermal stress in which a slip line is not generated is specified.
According to a preferred embodiment of the present invention, by changing the prescribed temperature variously and finding ranges of tolerable thermal stress for respective temperatures, this method finds the critical stress for slip defect generation which is a function of temperature at which the slip is not generated.
In the method of thermally processing a semiconductor wafer in accordance with a second aspect of the present invention, the range of tolerable thermal stress not generating a slip line in the semiconductor wafer is specified, and the speed of increasing or decreasing the temperature of the semiconductor wafer to be processed is controlled within the range of tolerable thermal stress.
The apparatus for thermally processing a semiconductor wafer in accordance with a third aspect of the present invention includes a susceptor supporting the semiconductor wafer, heating means for applying a temperature distribution on the semiconductor wafer, means for measuring the temperature distribution of the semiconductor wafer and means for controlling the temperature distribution.
In the method of evaluating a semiconductor wafer in accordance with a fourth aspect of the present invention, first, a semiconductor wafer to be evaluated is prepared. A certain temperature distribution is provided for the semiconductor wafer. Whether or not a slip line is generated in the semiconductor wafer is monitored. By the knowledge of the state of the temperature distribution and the knowledge of the presence or absence of the slip line, it is determined whether there is residua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for thermally processing semiconductor wafer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for thermally processing semiconductor wafer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for thermally processing semiconductor wafer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569199

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.