Optics: measuring and testing – Of light reflection
Patent
1990-08-30
1993-12-07
McGraw, Vincent P.
Optics: measuring and testing
Of light reflection
356432, 356429, 356430, 356431, G01N 2155
Patent
active
052687473
DESCRIPTION:
BRIEF SUMMARY
The invention relates to an apparatus for the simultaneous non-contacting testing of a surface or internal interface of a test material by means of incident light or a layer or spatial portion of the test material by means of back-scattered or back-reflected transmitted light, in which the apparatus comprises at least one light source and a plurality of test channels, each test channel comprising an optoelectronic converter and at least one light channel arranged in the light path between the light source and the converter and in which is positioned a beam splitter element, each light channel is constructed as an optical element for defining a light bundle, on at least part of the light path located within the same the light channels are juxtaposed in a common casing and constructed as recesses passing through said casing and the test material is arranged in the light path between the light source and the converter.
The invention also relates to the use of this apparatus for testing a supposedly smooth or regularly structured surface for irregularities thereof, or for testing a light transmitting, supposedly homogeneous or regularly structured layer for irregularities or inhomogeneities thereof and inclusions, or for testing a supposedly stationary surface or internal interface of the test material for position changes to said surface, or for testing a light transmitting, supposedly stationary spatial portion of the test material for movements and in particular vibrations of inhomogeneities or inclusions in the test material, as well as particles floating or suspended in the latter, or for testing the concentricity of a shaft for concentricity errors, particularly vibrations.
These are uses which are in part the same as in the laser scanner inspection systems (LSIS). The latter require a mechanically operated scanning system, such as e.g. a rotating mirror polygon, as well as a light collecting device, such as e.g. a light guide for guiding the scanning light beam to an optoelectronic converter. They are therefore expensive, bulky and susceptible to faults, particularly due to wear, because they do not operate in a static manner. They also do not permit the uninterrupted or continuous testing of a face moving past in a relative movement or a surface of a rotating shaft moving past in a relative movement. The combination of the moving past of the test material in the longitudinal direction and the scanning of the latter in the transverse direction, or the combination of the rotation and scanning of the test material gives on the latter a zig-zag tested surface, which limits the maximum speed with which it can pass under the LSIS if its entire surface is to be uninterruptedly tested and such as is necessary when testing the concentricity of a shaft. Thus, standard textile webs with a width of 4 m in the case of the presently standard passage speeds of 600 m/min and standard rotational speeds of rapidly rotating shafts of approximately 10 m/s are too fast to be tested continuously with LSIS. Moreover, if not only the concentricity of the shaft, but also its rapidly superimposed vibrations are to be tested, such a test or inspection is not possible with LSIS.
WO-87/3957 discloses an elementary optoelectronic testing device, which comprises a light source and a test channel with an optoelectronic converter and a light channel arranged in the light path between the light source and the converter. The test material is arranged in the light path between the light source and the converter. The light channel has a wall which supports a half-mirror and the converter and therefore has a certain thickness in order to give the necessary strength. A certain amount of space is also required by the holders for the half-mirror and the converter on the light channel.
It is admittedly obvious to attempt to assemble an apparatus of the aforementioned type from those elementary testing devices according to WO-87/03957, by juxtaposing the same. However, this is not possible, because the testing devices according to WO/87-03957 c
REFERENCES:
patent: 4722607 (1988-02-01), Anselment et al.
patent: 4854710 (1989-08-01), Opsal et al.
patent: 4910402 (1990-03-01), McMillan
Keesee La Charles P.
McGraw Vincent P.
Schwizerische Eidgenossenschaft Paul Scherrer Institute
LandOfFree
Apparatus for the simultaneous non-contacting testing of a plura does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for the simultaneous non-contacting testing of a plura, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for the simultaneous non-contacting testing of a plura will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2019241