Exercise devices – Involving user translation or physical simulation thereof
Reexamination Certificate
2000-11-13
2003-12-23
Crow, Stephen R. (Department: 3764)
Exercise devices
Involving user translation or physical simulation thereof
C482S146000
Reexamination Certificate
active
06666797
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to a balancing board apparatus. More specifically, the present invention relates to a snowboard simulator balancing board apparatus for closely simulating the act of snowboarding on dry land. The board is designed for practicing the balance and control movements necessary to effectively snowboard or carry out other related activities with similar methods of use.
Several apparatuses are known which have been used as dry land snowboard training devices. These devices use various mechanisms attempting to simulate actual snowboarding in real snow.
In the field of snowboard simulator balancing apparatuses, it has been well known to employ a board member or platform with various types of circular-shaped roller members thereunder. The user of the apparatus stands on the platform, feet apart, with the roller member positioned between the platform and the ground. The platform is often elongated and in a rectangular shape with rounded ends.
In these prior art apparatuses, the roller is placed underneath the board so that it's central axis is either perpendicular or longitudinal, depending on the respective design employed, to the longitudinal length of the board. In operation, the user places the platform on the roller and then stands on the platform with his or her feet being in a line which is substantially parallel to the longitudinal length of the platform. The roller is positioned below the platform with its central axis perpendicular or longitudinal to the line between the user's feet. To use the balancing board, the user rocks his or her body left to right to rock side-to-side on the roller in a see-saw-type fashion using the perpendicular roller, or front to back using the longitudinal roller.
U.S. Pat. No. 5,252,691 issued to Moscarello discloses a snowboard simulator balance apparatus which has a cylindrical roller that has an angled or tapered outer roller. The center of the roller has a large slot which allows it to engage a guide rail within the lower board surface. The board includes spacers between the upper and lower board surface.
U.S. Pat. No. 5,545,115 issued to Corcoran, discloses a snowboard simulator apparatus, which unlike U.S. Pat. No. 5,252,691, has a roller member running longitudinally along the board, which has two guide slots for engaging the guide or cross rails on the lower surface of the board. A pair of roller stop members, perpendicular to the guide rails, and located on the lower longitudinal edges of the board, prevent the escape of the longitudinally running roller from escaping laterally during use. The rolling travel of the member allows front-to-back action and pivot turn maneuvers experienced in actual snowboarding.
Additionally, other prior art methods have disclosed methods employing roller means other than the type of roller members discussed above. U.S. Pat. No. 4,966,364 issued to Eggenberger discloses a snowboard simulator board mounted on a cushion member which allows the stationary device to simulate tipping, sloping, and standing angles requiring acute balance in actual snowboarding. Between the cushion and the lower board surface is a bearing-type mechanism that allows the board to rotate on the cushion 360 degrees. A hard stop member is located on the nose end and a spring stop member on the tail end.
The prior art balancing boards have made attempts to improve the tracking and retention of a roller along its travel over the length of a balancing board. Various apparatuses have been attempted to achieve an improved fluid roll of a platform on a roller to further enhance performance. In addition, attempts have been made to ensure that the roller remains centered along the length of the board. Many of these apparatuses, or those incorporated by reference in the prior art disclose and further enhance the experience of a rocking side-to-side see-saw motion which is distinctly different than the motion actually experienced during snowboarding on real snow.
Additionally, boards with cushion members able to swivel 360 degrees or ball bearing methods attachable beneath simulated boards or in combination with actual boards, have been disclosed. However, no method in the prior art has employed different shaped rocking members at various positions within a simulated balancing board to more closely simulate the experience and motion of actual snowboarding when moving side to side.
Due to the demand for a snowboard simulator which can closely simulate snowboarding on real snow, it is desirable for a simulator apparatus to mimic the actual movement and experience of actual snowboarding. It is also desirable to have a snowboard simulator apparatus which can simulate as many different types of maneuvers and tricks which can be executed on a real snowboard on actual snow.
As can be seen from this discussion, it would be desirable to have a practice board simulator balancing apparatus for dry land use that allows the most realistic simulation of actual snowboarding on real snow. This balancing apparatus must be designed to be able to closely simulate the forward downslope, and pivoting and turning movements experienced during snowboarding in a simple and reliable fashion.
SUMMARY OF THE INVENTION
It is the primary objective of the present invention to provide a method by which an individual can improve the skills necessary to control a snowboard without actually having to be at a ski hill.
It is an additional objective of the present invention to provide a method which allows potential snowboarders to practice and master these skills within the confines of their own homes.
It is a further objective of the present invention to provide such a method without having to incur the expenses that are normally associated with the process of learning to master the use of a snowboard.
These objectives are accomplished by the use of a snowboard training apparatus which is designed to be used on any solid surface, such as a living room floor, and simulates the actual use of a snowboard on a ski hill. The training apparatus is made up of a plank-like board that roughly simulates a basic snowboard. Additionally, the lower surface of the board is equipped with a pair of laterally mounted rockers that extend downward from this surface. These rockers are configured in a triangular shape and having the point of the triangle facing downward at the center of the rocker. This configuration ensures that when the board is placed on a hard surface it rests on the rockers.
The training apparatus is employed by a user by placing it rockers down on a floor and mounting it by placing his back foot on the tail end of the board behind the rearmost rocker. This positioning of the back foot and placing one's weight on it lifts the front end of the board off the floor. The mounting process is then completed by placing one's forward foot on the forward end of the board directly over the front rocker. From this position, the user then bends his front knee and ankle thereby placing the majority of his weight on this front foot. This has the effect of forcing the front of the board down to come in contact with the floor and raising the rear off of the floor. Once these initial steps have been accomplished, the user obtains his neutral balance position over the center of the plank and it is this position upon which all other movements associated with the control of an actual snowboard are based.
From the neutral balance position the user can practice his balance and control over the orientation of the trainer. The key to the use of the present invention is learn how to make and control the small body movements that are essential in controlling a snowboard. Specifically, the use of the present invention allows the operator to learn that he can change the orientation of the board in relation to the rockers and their respective rocker points by manipulating his weight over the board. These changes in body position are exactly the same as those required to properly control a snowboard on a ski hill and so th
Crow Stephen R.
Harr Curtis V.
LandOfFree
Apparatus for the simulation of snowboard use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for the simulation of snowboard use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for the simulation of snowboard use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3128916