Liquid purification or separation – Processes – Separating
Reexamination Certificate
2001-02-16
2003-07-22
Housel, James (Department: 1648)
Liquid purification or separation
Processes
Separating
C210S781000, C210S787000, C436S177000
Reexamination Certificate
active
06596179
ABSTRACT:
TECHNICAL FIELD
The present invention concerns a novel system for separating a specific cell population from a heterogeneous cell mixture. More particularly, the invention concerns a closed, sterile continuous flow process for separating a nucleated heterogeneous cell population from a large volume of heterogeneous cell mixture in a relatively short time.
BACKGROUND OF THE INVENTION
In the field of cell separation, it is common to separate cells from plasma in blood and also to separate by centrifugation various types of cells such as red cells from white cells, and the like. Centrifugation segregates cells according to their differing specific gravities. However, there is often a need to separate from a suspension cells having specific gravity only slightly different from those of other cells in the suspension. If the cells are of nearly equal specific gravity, they may not be separated by centrifugation.
For example, it may be desirable to isolate various types of leukocytes from a bone marrow concentrate or a peripheral blood cell concentrate. Or, it may be desirable to perform selective separation of tumor cells from a bone marrow concentrate, for example, hematopoietic progenitor cells. It may be desirable to selectively separate specific T-lymphocyte subset populations (helper-inducer or suppressor-cytotoxic T-lymphocytes) from a lymphocyte concentrate that is prepared using a blood cell separator.
Additionally, it may be desirable to selectively separate precursors of lymphokine activated killer (LAK) cells, tumor infiltration lymphocyte (TIL) cells, or activated killer monocytes, from lymphocyte or monocyte cell concentrates or from a tissue cell preparation.
By current techniques of the prior art, such as Sauer, et al, U.S. Pat. No. 4,710,472, magnetic separations in significant quantities of individual subsets of cells from larger populations became possible. This, in turn, opens up new vistas of research and therapeutic techniques, making use of the purified cell populations that may be obtained.
Another current practice in the field of cell separation, utilizes sheet membranes, hollow fibers, or packed beds of either beads or particles having physically adsorbed or covalently attached chemicals or biochemicals, such as antibodies. By these means certain populations of cells are selectively separated from whole blood, blood components, bone marrow, tissue digests, or other types of cellular suspensions. These devices are designed to allow continuous inflow and return of the cell mixtures. When used to process blood, these devices usually operate at the normal rates of blood flow and under conditions in which the concentration of desired cells can be very low compared with other cell types. The separation process, therefore, is often not efficient.
Immunoaffinity cell separation systems for blood and bone marrow conventionally require two separation processes: an initial cell separation to remove red blood cells and the immunoaffinity cell separation to capture or deplete a specific “target” cell population, such as a nucleated heterogeneous cell population. In the immunoaffinity separation step, a biological particle such as an animal erythrocyte, is modified by coupling to its surface a monoclonal or polyclonal antibody or other biological selected to specifically bind to an antigen or immunogenic marker on the surface of the target cell. A high density particle/target cell conjugate, such as an erythrocyte rosette, is thereby created. Because a significant incubation time is required for particle/cell bonding to occur in such systems, the cell mixture is usually centrifuged twice, once to promote binding of the particle-antibody conjugate to the target cell and a second time to separate the particle/target cell conjugate using a high density separation media so that only the high density erythrocytes and erythrocyte/target cell conjugates will sediment through the medium. Separation is thus effected with efficiencies of up to 95%.
In addition to the many steps required to effect immunoaffinity separations using these techniques, the immunoaffinity cell separator systems currently described in the literature are limited in the volume of cell preparations that can be processed, and none can be performed in a closed, continuous flow on-line procedure with a patient.
In view of these difficulties, the need exists for new and improved methods of continuously separating a specific cell population from a heterogeneous cell mixture, especially for separating from a cell mixture populations of cells that differ in specific gravity and/or sedimentation velocity only slightly from other cells in the mixture.
SUMMARY OF THE INVENTION
The present invention provides a method for separating biologic component from heterogeneous cell populations by the process of reacting a specific binding molecule attached to an insolubilized particle with the biologic component to alter the sedimentation velocity of the bound biologic component. The bound biologic component is then separated from unbound components by continuous centrifuging. The invention combines the advantage of centrifugating large volumes of cells in a closed, sterile continuous flow process with the high degree of selectivity provided by immunoaffinity cell separation systems. This invention is especially useful for separating a target cell population from a heterogeneous cell suspension in which the density and/or sedimentation velocity of the target cells is insufficiently differentiated from those of other cells in the suspension to effect separation by centrifugation with or without the use of high density separation media.
The processes provided herein yields a method for removing from heterogeneous cell populations—such as blood, blood components, blood substitutes, bone marrow, and tissue digests—biologic components including the following: hematopoietic cells, including all leukocyte subpopulations and pluripotent stem cells; tumor cells; tissue culture cell lines, including hybridoma cells; antigen specific lymphocytes; infectious agents, including bacteria, virus and protozoa; and toxic substances, including but not limited to drugs or pharmaceuticals and animal, microbial and plant toxins. These processes can be used for therapeutic and diagnostic applications and can be utilized to perform both positive and negative cell selections. In positive cell selection, the bonds between the captured cells and the particles are released and the isolated captured cells are the products used in therapeutic or diagnostic applications. In negative cell selection, the cell mixture depleted of the captured cells (i.e., the “target cells”) is the cell product.
Like known affinity cell separation procedures, the present process uses separation particles with a specific affinity for the target cells or having chemically attached thereto a biological molecule with a specific affinity for the target cells. In a continuous flow process for conducting leukopheresis—the affinity particles are continuously fed at a predetermined ratio to the cell mixture through a mixing chamber wherein the particle/target cell conjugates are formed. From the mixing chamber the entire cell mixture, containing the particle/target cell conjugates, passes into a continuous flow centrifuge. Any of a number of commercial continuous flow centrifuges and eleutriators that employ disposable plastic insets including chamber means for facilitating density based separation can be used, such as the—CS-3000® Blood Cell Separator—and —Autopheresis-C® System—sold—the Fenwal Division of Healthcare Corporation—Baxter of Deerfield, Ill; the 2997—sold by Cobe Laboratories, Inc.—of Lakewood, Colo.; and “Beckman J-Series Elutriation Centrifuges” sold by Beckman Instruments, Palo Alto, Calif.
In the—AUTOPHERESIS-C® System—anticoagulated whole blood may be pumped into a separation device, where plasma is initially separated in a centrifugal density separation chamber. From there, the separated plasma is filtered through a rotating membrane filter and directed into a colle
Bischof Daniel F.
Chapman John R.
Ellis Dale R.
Giesler Richard
Baxter International Inc.
Housel James
Kolomayets Andrew G.
Lucas Zachariah
Mayo Michael C.
LandOfFree
Apparatus for the separation of biologic components from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for the separation of biologic components from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for the separation of biologic components from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3005746