Apparatus for the remote measurement of physical parameters

Optical waveguides – Optical waveguide sensor

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S015000, C385S027000, C385S088000, C385S092000, C385S100000, C385S134000, C385S147000, C073S800000

Reissue Patent

active

RE037283

ABSTRACT:

The invention relates to apparatus for the remote measurement of physical parameters in which the advantages of optical fibre cables and optical fibre sensors are exploited for use within the oil industry, particularly for use with remote subsea satellite wells and oil refinery stacks, and such that the sensors may be recovered and or replaced.
BACKGROUND OF THE INVENTION
As oil and gas reserves have been consumed over the years, the extraction of the oil and gas has become increasingly more difficult under more demanding conditions. Accordingly, there is a need for the reserves to be more widely monitored to a higher quality than hitherto, and this is particularly so for oil and gas reserves which lie beneath the sea bed. Optical fibre sensors, together with optical fibre cables to link the sensor to the measurement instrumentation, are being developed for this purpose since they offer specific advantages, particularly in the ability to withstand extremes of high pressure and temperature. Furthermore, such optical fibre sensors may be of a structure and diameter similar to those of the optical fibre cable itself. There are specific advantages in being able to remove and replace a sensor for the purposes of calibration, repair, and enhancement, but this is notoriously difficult to do within the oil industry, particularly with subsea wells because of the harsh environmental conditions and the sometimes considerable distances of tens kilometers between the desired point of measurement at the bottom of a well and the point of use of the information at the production platform. In addition, the substantial demands made on the equipment involved in extracting oil and gas make it very difficult and expensive to solve measurement problems. Hence, it is Very desirable for there to be apparatus which is capable of isolating the problems of measurement from all the other challenges of exploiting the oil or gas reserves, particularly if it is not necessary to install the measurement system at the same time as the other equipment.
The chemical industry has a requirement to monitor discharges from stacks such as chimneys and pipes. In a typical processing site, many stacks will exist over many acres of ground currently, this monitoring is achieved by installing ladders and platforms on the outside of stacks, installing expensive equipment on the platforms, and sending trained personnel up the ladders to the platforms to perform measurements on a regular basis. An altogether better approach would be to have an apparatus which is capable of isolating the problems of measurement from the challenge of getting people and equipment into the remote measurement location, particularly if it is not necessary to install the measurement system at the same time as the other equipment.
SUMMARY OF THE INVENTION
An aim of the present invention is to improve on known apparatus by simplifying the apparatus needed to install and retrieve an optical fibre sensor for the measurement of physical parameters, and a further aim is to do so with minimum disturbance to the other operations taking place during oil and gas production.
According to of the present invention, there is provided apparatus for the remote measurement of physical parameters, comprising sensing means for sensing one or more physical parameters, instrumentation means for interrogating the sensing means and making a measurement, cable means for communicating between the sensing means and the instrumentation means, container means for containing the sensing means and the cable means prior to installation of the sensing means, container holder means for providing a support for the container means at a convenient location, channel means for providing a channel between the container means and a measurement location where the channel is suitable for accepting the cable means and the sensing means, and cable installation means for installing the sensing means and cable means from inside the container means into the channel means and placing the sensing means at the measurement location, the cable installation means comprising means for propelling fluid along the channel means.
The apparatus may include power supply means for supplying power to the apparatus.
The apparatus may include container insertion means for inserting the container means into the container holder means so that the channel connection is made.
The apparatus may include a channel connector means for making a channel connection between the container means and the channel means.
The sensing means may be one or more optical fibre sensors. Preferably the sensing means may be of dimensions permitting the channel means to be a commonly available component. Also preferably, the optical fibre sensor may be of a structure and diameter comparable with those of the cable means.
The instrumentation means may be such that a measurement may be recorded at the time of occurrence for use at a later time. The instrumentation means also may be such that the measurement is transmitted to a receiver situated elsewhere using a non-contact method such as radio wave communication.
The cable means may be one or more optical fibre cables containing one or more optical fibre waveguides. Preferably, the optical fibre cable may be one commonly used within the telecommunications industry. Preferably the optical fibre cable may be wound into a cable dispensing means similar to those in use in fibre optic guided missiles and torpedoes.
The container means may be a single unit or may be a plurality of units, each for the purpose of deploying embodiments of the sensing means.
The container holder means may be such as to accommodate the container means as a single unit, or may be such as to accommodate a plurality of units for the purpose of deploying embodiments of the sensing means.
The channel means may be one or more tubes with one or more cavities. Preferably, the channel means may be chemical injection or hydraulic tubing and, more preferably, the channel means may be commonly available quarter inch bore high pressure hydraulic tubing. The channel means may also be a natural cavity in the environment containing a guide such as a cable or a monorail or slotted rod. The channel means may also be used for calibrating the sensing means.
The cable installation means may be power assisted using hydraulic pressure and or hydraulic drag forces. The cable installation means may also be used for removing the sensing means from the channel means. The cable installation means may also include cable payout means for pulling cable means out of the container means in a controlled manner.
The power supply means may wholly reside within the container means. Alternatively, the power supply means may be located outside the container means, in which case there is further provided power connector means for making a power connection between the power supply means and the components of the apparatus inside the container means, where the power connection is made when the container means is located in the container holder means and the power connection is broken when the container means is removed from the container holder means. The power supply means may supply power in a combination of a variety of forms, such as electrical, magnetic, hydraulic, pneumatic and optical power.
The container insertion means may be manual for applications where the container holder means is situated at a benign location. For other and more extreme environments, the container insertion means may involve the use of automatic apparatus, such as subsea remote operated vehicles, for example when the container holder is situated on a sea bed.
In an embodiment of the present invention, the apparatus is one in which the cable installation means includes cable removal means for removing the sensing means and cable means from inside the channel means back into the container means, the channel connector means includes channel break means for breaking the connection between the container means and the channel means, and the container insertion means includes contai

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for the remote measurement of physical parameters does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for the remote measurement of physical parameters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for the remote measurement of physical parameters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560686

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.