Apparatus for the production of freshwater from extremely...

Refrigeration – Processes – Circulating external gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S272000, C062S285000, C062S389000

Reexamination Certificate

active

06684648

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to a water system for first condensing water vapor from the atmosphere, subsequently collecting the condensate to supply freshwater, treating the freshwater and dispensing potable water in areas suffering from shortages of freshwater wherein the climate is characterized by extended periods of extremely high temperature and very high humidity.
2. Summary of the Invention
Freshwater is needed everywhere at all times for sustenance of any form of life on earth. Potable water is necessary for survival of human kind. Continuous supply of freshwater is required for other vital uses in daily life such as irrigation and cultivation of land, drinking of domesticated animals and birds, cleaning, washing, and preparation of foods and drinks. This is in addition to the role of fresh water in driving the wheels of industry and generation of electricity. While several forms of natural freshwater resources are available, they are limited and not readily within reach for direct use of people everywhere. In fact, disputes over water rights and wars for rights to access freshwater are expected to escalate in the near future.
In the past, people searched for locations to settle wherever freshwater sources were conveniently accessible, nearby rivers or lakes, and around locations of abundant groundwater or within regions of sufficient rainfall. Whenever water resources dwindled or became scarce, they moved on to develop new settlements where they had easy access to ample supply of water. As the earth became heavily populated, fertile and water-rich land became overcrowded and eventually communities had to settle in regions of limited water resources. Furthermore, change in weather patterns has reduced rainfall in some areas and deserts started to creep in as water resources were depleted, while the inhabitants had no recourse but to stay.
Accordingly, means are needed to supply water from available water resources that may not be readily accessible. Examples are transportation of potable water sources located further away from population centers; tapping in sources of water that require little to extensive treatment before use for human consumption; and employment of proven technologies to produce freshwater from raw water, such as salty or contaminated groundwater, high salinity seawater, or contaminated water from rivers or lakes.
People have long relied upon underground water as a source of continuous water supply, however, increases in industrial and agriculture activities have led to its rapid depletion as well as contamination of that valuable water resource. Rivers and lakes are not capable of meeting local demand on water in some regions and are polluted in other regions. Furthermore, the inevitable shift in global weather patterns throughout time resulted in scarcity of water in populated areas that previously enjoyed plentiful supply of freshwater. In some areas people lost access to any local surface or ground water sources of water. Because of these shortages, vast areas of land are entirely deprived from natural freshwater resources, thus, water has to be transported across long distances and at very high prices, whether for the capital cost of the infrastructure or the extensive expenditure on land or sea transportation. This is compounded by the high potential of water contamination en route.
For areas along the shorelines of oceans or seas, or wherein brackish groundwater is available, water desalination has been used wherever feasible by means of flash desalination, reverse osmosis, electrodialysis, or ion exchange depending on the salinity level and the economics of different raw water treatment technologies and their future development. Furthermore, there are emerging technologies for treatment of polluted or contaminated underground water resources, rivers and lakes, however desalination and other treatment technologies are economically viable only at large production scales that require huge installations, complex distribution systems and a large customer base to exploit the economy of size. As a result, this limits the implementation of such approaches to securing the water supply to large population centers wherein the demand on water is increasing and the consumption is already high.
Generally, natural freshwater resources are limited in regions along the shorelines and within the vicinity of large salty water bodies that are characterized by extremes of high temperature and high humidity throughout the year. Such regions often have low precipitation year around and groundwater is also limited due to lack of rainfall to replenish the water resources, difficulty to grow plants and trees that aid in precipitation of atmospheric water, and absence of forests that contribute to the natural water supply from fog. The fast rate of consumption of underground water leads to depletion of the water stored in the natural aquifers and to a lowering of the water table associated with an increase in the salinity of groundwater. Agricultural and industrial activities, even at a large distance from the site where freshwater is scarce, have led to contamination of underground water everywhere through their emission of insecticides, herbicides and a host of other toxic chemicals.
Water economy strategies may reduce the water demand but any water conservation measures will not be sufficient to supply areas deprived of any type of water resources. Potential reuse of wastewater after treatment may supply a portion of the water demand, although in some situations the cost of processing, filtration and purification may be prohibitive.
In spite of the vast progress in water treatment technology and the ability to supply people with freshwater anywhere at any time, there are situations in which it is practically impossible to economically provide some population centers with freshwater in a manner compatible with local water demand and daily needs. Vivid examples of the difficulty to access good quality drinking water are numerous. Inhabitants of population pockets in the African deserts are forced to drink water with high salt content and harsh taste. Bedouins suffer from scarcity of water for drinking and for raising their sheep. Dwellers of rural regions, remotely located settlements and scattered low population areas have great difficulty accessing a reasonable supply of freshwater for drinking to maintain there health and well being and to sustain the sparse agriculture activities that provide them with food supply.
Accordingly, there is an urgent need in the art for simple and low cost water systems to supply freshwater to sparse population centers in remote areas that are isolated from metropolitan regions; especially those population pockets that have no access to municipalities or the main supply of water for large cities. These water systems should be easy to operate and require minimal or no maintenance. Since most of the potential users have no access to any central electric power services, electric power requirements should be limited and are preferably delivered by small mobile electric power generators that do not require a connection to electrical power grids or a supply of local electricity.
With the continuous development of water desalination and water treatment technology, relatively small units have been designed and manufactured to supply potable water for limited groups; such as the skid mounted and truck-mounted reverse osmosis (RO) units currently employed by the U.S. Military. However, such units are costly in maintenance, require frequent replacements of RO membranes, consume large quantities of electric power and are subject to frequent outages and repairs. Furthermore, the addition of pretreatment chemicals is necessary and plant design and production require information on the composition of the raw feed water, including salinity and presence of minerals and contaminants. Also, small distillation systems are often used in homes to produce pure potable water from tap water. However,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for the production of freshwater from extremely... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for the production of freshwater from extremely..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for the production of freshwater from extremely... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296409

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.