Apparatus for storing surplus ADSS cable

Optical waveguides – Accessories

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S135000, C385S100000, C385S136000, C385S138000, C174S07000A

Reexamination Certificate

active

06311006

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the art of data transmission and more particularly to a method and apparatus for storing surplus ADSS cable along an aerial route. ADSS is an acronym for “all-dielectric self-supporting”. Such cable has a strong non-metallic sheath which supports the optical fibers making up the cable. ADSS cable may also have a non-metallic reinforcing strand at its core. All-dielectric cable has the advantage that it can be used in close proximity to electrical power lines, whereas conventional communications cable are required to be run in a separate zone, usually at least forty inches below the power cables.
Optical cable is vulnerable to damage (fiber breakage) from bending and twisting, and performs best when sag and twisting are minimized. Cable manufacturers specify a minimum bend radius which must be strictly observed to avoid fiber damage. Currently, as a rule of thumb, the bend radius cannot be less than ten times the cable diameter for an unstressed cable, fifteen times the diameter for a stressed cable. This rule of thumb may change as cable construction changes; the trend appears to be toward cables having smaller minimum bend radii. In any event, devices used to store surplus cable must protect the cable from bending too sharply, that is, at less than the specified minimum bend radius.
Fiber optic cable is typically installed on aerial routes in very long lengths so as to minimize the number of splices, each of which degrades optical signals. To allow for reconfiguration such as pole movement, and for repairs, it is important to provide slack in the form of surplus lengths of cable at intervals along the route, so that entire long lengths of cable do not have to be taken down when minor repair or rerouting is required. The more frequent the storage interval, the less the probable length of cable which must be rehung if rerouting is necessary. The surplus cable may be stored either below ground, or along the aerial route on or between poles.
In the underground storage method, cable is routed from its aerial location, down a pole, and into an underground enclosure. The cable is coiled within the enclosure, and then routed back up the pole to continue along the main cable route. This is presently the predominantly accepted method for storing surplus ADSS cable, but it is has several disadvantages.
First, underground storage requires an expensive, watertight, underground enclosure and necessitates the expense of excavation. Moreover, an unobstructed excavation site is not always available at the exact pole location where the cable must be stored.
Second, an enclosure sometimes does not provide sufficient space to store the required length of cable in a manner that renders the cable easy to access and manage when access is necessary. If the pole has to be relocated subsequently, there is an additional moving expense of excavation at the new pole site to install the container.
Third, the fact that the cable must be routed up and down the pole from the aerial attachment location to the under-ground enclosure makes the cable vulnerable to damage from collisions (e.g., auto accidents, being struck by mowers, etc.) and from vandalism. Any such damage to ADSS cable would require potentially extensive and costly cable replacement attended by unacceptable loss of service. Clearly, an aerial method of storing ADSS cable would avoid the drawbacks of the underground storage method just described.
For aerial storage, it has been proposed to run surplus optical cable around snowshoe or teardrop shaped devices to avoid over-bending. U.S. Pat. No. 5,092,663 (Hivner) and U.S. Pat. No. 5,408,517 (Kaplan) exemplify prior devices. These devices, however, were designed for pre-ADSS fiber optic cable, which does not have sufficient strength to support itself, and must be lashed to or otherwise supported from a steel or metallic messenger cable. While prior inventions are acceptable for storing messenger-supported fiber optic cable, no provision has been offered which would make such inventions suitable for use with ADSS cable, which must be protected at all times not only from over-bending, but also from incidental contact and abrasion.
In the installation of messenger-supported fiber optic cable, attachments of any necessary hardware such as that described in the patents mentioned above may be made directly to the steel messenger cable without any danger of damaging the fiber optic cable. In the case of ADSS cable, however, the supporting member is the cable's outer sheath, which is subject to possible damage by improperly designed suspending attachments.
A problem related to surplus cable storage is that of supporting splices between cables. Splicing is usually done at ground level in a truck or trailer containing special splicing apparatus. Therefore, enough excess cable must be provided at the splice so that it can reach the ground. Additionally, once the splice has been made, it is secured in a box known as a “splice closure”, which may weigh as much as 35 pounds. Because of their weight, such closures have been mounted directly on the pole in the past, but this creates a confusion of cables near the pole, where they may be damaged, and where there may be no minimum bend radius protection. It would be better to support the splice box from the cable, if one could avoid injuring the cable.
In our prior application, identified above, we disclosed an installation which included:
(a) a pair of dead ends, each connecting to the pole, for relieving line tension so that the surplus length is not under tension,
(b) a pair of snowshoe-shaped bend radius protectors for supporting opposed ends of a loop of surplus cable, on the main part of the cable which is under tension,
(c) a pole-mounted multiple cable guide for supporting the ends and the middle of the loop and to protect the cable as it passes the pole, and
(d) a pair of cable protection sleeves, one attached to each of the radius protectors, for suspending the protectors from the main line under tension.
The following disclosure repeats material from our prior specification, and adds several new improvements—both methods and devices—useful with the invention disclosed previously.
SUMMARY OF THE INVENTION
An object of the invention is to provide an above-ground method of storing surplus ADSS cable along an aerial route.
Another object of the invention is to permit such a method to be practiced at any height above the ground, so as to avoid other utility attachments. A related object is to enable communications cables to be installed in the power zone on a utility pole.
A further object of the invention is to protect fiber optic cable from damage by being struck by automobiles, mowing equipment and the like.
Yet another object is to facilitate access to stored cable when necessary.
An additional object of the invention is to provide a method and apparatus for storing a sufficient length of surplus ADSS cable so that the cable may be conveniently and safely relocated to a vehicle at ground level for splicing operations, and then conveniently restored to the aerial storage location once splicing is completed. A related object is to facilitate relocating a pole supporting the cable, when necessary.
Another object of the invention is to provide means for storing ADSS cable which does not itself endanger the integrity of the cable.
Yet another object is to permit the storage of an unlimited length of surplus ADSS cable.
One further object is to provide a method and apparatus for storing surplus ADSS cable in a manner which is economical of materials and labor.
It is also an object of the invention to provide a way of installing a splice closure at a surplus loop installation location.
These and other objects are attained by an apparatus for storing a surplus length of ADSS cable on a pole. The apparatus includes a pair of dead ends, each connecting to the pole, for relieving line tension so that the surplus length is not under tension, a pair of snowshoe-shaped bend radius protectors for supporting op

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for storing surplus ADSS cable does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for storing surplus ADSS cable, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for storing surplus ADSS cable will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2571709

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.