Apparatus for simulating traumatic brain injury and method...

Surgery – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06588431

ABSTRACT:

FIELD OF THE INVENTION
The subject invention relates to an apparatus and method for simulating human central nervous system injuries and, more particularly, the subject invention relates to an apparatus and method for animal simulation of human traumatic brain injury and spinal cord injury.
BACKGROUND OF THE INVENTION
The predominant mechanism in most cases of traumatic brain injury (TBI) is diffuse axonal injury (Whyte and Rosenthal, 1993). While axonal injury is common in all TBI regardless of severity (Povlishock et al., 1992; Mittl, 1994), a shearing of the axons occurs in human diffuse axonal injury (DAI) leading to progressive changes that ultimately may result in the loss of connections between nerve cells. The slow progression of events in DAI continues for up to several weeks after injury creating a window of opportunity for therapeutic intervention. Up to now, there are no consistently reproducible small animal models for DAI which closely mimic the changes associated with DAI in humans (Maxwell et al., 1997; Povlishock, 1993). Without such a model to study the mechanism of injury, it is difficult to develop prevention and/or interventional methodologies to limit the extent of injury. In part, this may explain the lack of efficacy of the clinical trials to assess various medications to limit injury in TBI.
There are approximately 500,000 new cases of TBI in the U.S. each year (Frankowski, 1985), and the incidence requiring hospitalization is estimated to be approximately 200-225/100,000 population (Frankowski, 1986; Carus, 1993). Currently, it is estimated that brain injuries account for 12% of all hospital admissions in the United States (Sandel, 1993). When compared to spinal cord injury, which accounts for less than 1% of hospital admissions, it is clear that TBI is a medical care problem which has a significant impact financially within the United States. Approximately 30,000-44,000 people will survive a severe TBI with GCS score<9 (Glasgow Coma Score Scale, Jennett, 1981) in the U.S. each year and more than 70,000 will be significantly disabled from moderate to severe TBI (GCS≦10) (Whyte & Rosenthal, 1988). Yet with new medical management techniques, less than 10% will remain in a persistent vegetative state (Whyte, 1993; Rosner, 1992; Rosner, 1990). A GCS score of eight or less generally reflects a state of unconsciousness in which the patient demonstrates no eye opening, does not follow simple commands to move muscles, and has vocalizations which are limited to sounds. Such signs are indicative of severe brain injury (Whyte, 1993; Jennett, 1975, Jennett, 1981).
Approximately 52,000 to 56,000 people die each year from TBI (Kraus et al., 1996), resulting in direct costs approximated at more than $50 billion annually (Max et al., 1991). The costs of severe TBI to the individual and family are extremely high (McMordie, 1988). Acute medical and rehabilitation bills are often around $100,000 with some considerably higher (McMordie, 1988). The Model Systems Database for Traumatic Brain Injury demonstrates there is a correlation between the average Disability Rating Score and the combined acute care and rehabilitation charges (Bullock et al., 1995). Those with a severe TBI (GCS score of 6-8) have average combined charges of $110,842, and those with a very severe TBI (GCS score 3-5) have average combined charges of $154,256 (Lehmkuhl, 1993). About one-half of all TBIs are transportation related (Whyte, 1993; Lehmkuhl, 1993) and these patients have some of the highest combined charges for acute care and rehabilitations (Lehmkuhl, 1993). This may be related to the mechanism of TBI in high speed motor vehicle crashes, specifically the presence of diffuse axonal injury (DAI) being most prevalent in the midbrain and brain stem areas (Whyte, 1993). Clearly, brain injuries of this severity that occur with high speed acceleration-deceleration injuries, have the highest costs to society. TBI clearly causes more mortality, morbidity and probably more economic loss than HIV infection in the United States.
Motor vehicle crashes of all types are responsible for approximately 40%-50% of the TBI admissions recorded in the Model TBI Systems Database (Lehmkuhl, 1993). The predominant mechanism of injury is considered to be diffuse axonal injury (DAI). Approximately 30%-40% of the fatal head injuries involve diffuse axonal injury by pathological examination (Bennett et al., 1995; McLellan, 1990). However, based on beta-amyloid precursor protein immunostaining, axonal injury may be present in all cases of fatal head injury (Gentleman et al., 1995). In cases of persistent vegetative states, Kampfl et al. (1998) recently found that all cases had evidence of DAI in magnetic resonance imaging (MRI). Diffuse axonal injury occurs even in the absence of a blow to the head and is more prevalent than previously realized. Even in mild head injury, diffuse axonal injury is present in almost ⅓ of the cases (Mittl et al., 1994). The defining characteristic of DAI is the morphologic change to the axons which occurs over the course of several days to weeks and the fact that multiple regions of the brain are injured. While a component of DAI is present in blunt or penetrating trauma injury, it is at the periphery of the injury zone and is much less significant than the predominant mechanism of injury. DAI is the major mechanism of injury in high speed acceleration-deceleration injuries associated with motor vehicle crashes. While all four mechanisms of TBI (DAI, blunt trauma, penetrating trauma, axonia) may be involved in such an injury, it is the predominant mechanism of injury under this condition.
Diffuse axonal injury is only one of the cellular mechanisms of traumatic brain injury. The others include such things as direct contusion to the cells, intracerebral hemorrhage (blood across the blood brain barrier), perfusion-reperfusion injury, and anoxia. In a high velocity TBI such as those sustained in a car accident and the subsequent sequelae one can have several mechanisms of cellular injury. Each of these mechanisms appears to cause a unique area and type of TBI. This also indicates that each type of cellular injury activates different cellular pathways and cellular channels. For instance, the sequelae of brain injury from a subtype of intracerebral hemorrhage described as subarachnoid hemorrhage (both spontaneous and traumatic) appears to respond to L-type Ca channel blockers but these same substances have not been protective in another type of TBI (European Study Group on Nimodipine in Severe Head Injury, “A Multicenter Trial of the Efficacy of Nimodipine on Outcome after Severe Head Injury”, J. Neurosurg., 1994, 80:797-804; Allen GS, Ahn, HS, Preziosi, TJ, et al., “Cerebral Arterial Spasm—a Controlled Trial of Nimodipine in Patients with Subarachnoid Hemorrhage”, N. Eng. J. Med., 1983, 308:619-624). It is clear that other types of channels, including Ca channels, may be involved in other types of cellular injury.
In DAI, when enough force is applied to the cytoplasm of the neuronal cell, the elastic memory of the substance is exceeded. Then the amount of cytoplasmic deformation is directly related to the time the force is applied. This in turn relates to the amount of cytoskeletal disruption that occurs. Applicant's work has proven, with this device, that the severity of neuronal injury that occurs when a rat is injured at a defined Hertz is related to the length of time the force is applied. Furthermore, that many of the same areas of the brain have cellular disruption (corpus callosum, mesencephalon and brain stem) as is noted in humans who have suffered high velocity TBI as is noted in motor vehicle crashes. It is understood that many who have suffered a TBI in a cause similar to a motor vehicle crash may have more than one mechanism of neural cell injury. The injury inducing methods enabled by this machine will allow applicant's to analyze the causes and the subsequent effects of DAI on neuronal cells and allow testing of unique compounds to protect against further n

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for simulating traumatic brain injury and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for simulating traumatic brain injury and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for simulating traumatic brain injury and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3082453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.