Apparatus for separating liquid from gases

Gas separation – Multiple separators – each with discrete and longitudinally... – Filters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C055S426000, C055S465000, C055S482000, C096S187000, C096S190000, C096S219000, C096S220000

Reexamination Certificate

active

06302933

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a liquid separator for the separation of liquid from gases carrying liquid components, including a housing with at least three openings. The openings being formed by a tubular inlet opening and two tubular outlet openings which are connected with one another to carry a flow. At least one separating device is disposed in the direction of flow between the inlet and the outlet openings, and substantially only separated liquid is able to flow through one of the outlet openings and substantially only gas freed of liquid is able to flow through the other outlet opening.
Liquid separators are generally known, and are used, for example, as external oil separators in the field of internal combustion engines. The gases, enriched with liquid components, pass through an inlet opening into the liquid separator and pass at least through one separating means, which can consist, for example, of a wire wool or wire mesh or a disk of nonwoven material. A large part of the liquid components are then deposited, on the basis of their inertia, onto an impact wall that follows in the direction of flow, while the separated fluid is returned through one of the outlet openings into a liquid reservoir, and the gas freed of the fluid is discharged through the other outlet opening. It is to be noted, however, that the degrees of separation are not very satisfactory, and the previously known oil separators tend to ice up at low ambient temperatures of less than −20° C. Their practical properties therefore are not very satisfactory.
SUMMARY OF THE INVENTION
The invention is addressed to achieving substantially better degrees of separation combined with low pressure losses, and to largely forestall the danger of ice-up at low ambient temperatures.
In the scope of the present invention, provision is made for the housing with the inlet opening and the outlet openings to be configured as a jacket tube, for the outer tube to surround an inner tube at an all-around distance therefrom, and for the inner tube to communicate at one end with the inlet opening and to be associated at the other end with the outlet opening for the separated liquid.
It is an advantage that the good practical properties of the liquid separator are largely independent of the external influences. Even at low ambient temperatures, the liquid separator according to the invention is distinguished by good degrees of separation at low pressure losses, and the danger of icing can thereby be reduced to a minimum. The result of the tube-in-tube construction is good insulation of the stream-bearing inner tube and of the icing-endangered separating device by the jacket tube which is directly affected by the external temperatures. The inner tube essentially carries the gas enriched with liquid components and then the separated liquid, while the jacket tube carries substantially only a gaseous medium after the separation of the liquid.
For the purpose of achieving an advantageous embodiment of the liquid separator, the return of the separated liquid can take place through the corresponding outlet opening in the direction of flow, the outlet opening being preferably disposed such that the separated liquid will additionally be affected by the force of gravitation.
The jacket tube can be of an essentially T-shaped configuration, wherein the inlet opening is disposed between two outlet openings situated substantially opposite one another. In this case it is an advantage that the separation of the gas carrying liquid components can be performed simply, and the media separated from one another can easily be carried out of the liquid separator. A jacket tube configured in this manner is advantageous from the production and cost points of view.
The inner tube can be substantially L-shaped and designed as an impact wall. Since the gas carrying liquid components is deflected at a substantially right angle, high degrees of separation can be achieved. The simple geometrical configuration of the inner tube is outstandingly significant. The combination of a T-shaped jacket tube and an L-shaped inner tube makes for economical manufacture.
In one advantageous embodiment, the jacket tube and the inner tube can be configured as a casting in which they merge integrally with one another, and which consists of a tough plastic resistant to the flowing medium. In addition to the light weight of the liquid separator, large numbers of separators can be manufactured economically. A plastic can be used which is adapted to the particular circumstances of the application. Other materials, such as metal materials, can also be used.
If at least the jacket tube is made as a casting it is especially easy to configure the inlet opening and the two outlet openings as mounting flanges which can be brought into sealing engagement with adjoining ducts. For example, annular beads can be made integral with the jacket tube at the inlet opening and outlet openings, and tubes of rubber-elastic material, for example, can be slipped over them and can be fastened at the end adjacent the jacket tube if necessary by a hose clamp. In another embodiment the mounting flange can be configured so as to have holes to accommodate mounting screws by which it can be fastened to a machine part. On the end facing the machine part the mounting flange can be provided, for example, with a groove-like recess into which a sealing ring can be laid for a static seal.
For the improvement of the degree of separation achieved by the liquid separator, a preliminary separator can be placed at the inlet opening, which consists of a mesh through which fluid can pass and which is surrounded by a mounting ring and completely covers the cross section of the inlet opening, the mounting ring being able to be snapped into the inlet opening. It is advantageous in this case that the preliminary separator can easily be replaced if it becomes clogged. The mounting ring, of stable shape, can consist of a tough and hard plastic and can advantageously have the same heat exchange coefficient as the section of tubing that surrounds the inlet opening.
The main separating device can be formed by a replaceable separator cartridge on which the inner tube is force-fitted or positively locked at the end facing the outlet opening through which substantially naught but liquid can flow, the separator cartridge being formed by a tubular cage around a mesh permeable to the flow.
The mesh material of the preliminary separator and separator cartridge can be made, for example, at least of a wire mesh, wire wool or nonwoven material. A metal mesh externally surrounding a nonwoven filter might also be used. When such meshes are used the advantage is that very good degrees of separation can be achieved at low pressure losses. With continued use and the resultant increasing clogging of the mesh, the mesh can be easily replaced by replacing the cartridge. The separator cartridge together with the mesh can be replaced as a whole, or the cage can be reused after replacing only the mesh.
The separator cartridge can have a truncoconical part reaching beyond the inner tube toward the outlet opening, the cage being formed in this part by liquid-guiding struts. Toward the outlet opening through which substantially only separated liquid can flow the truncoconical part has an outside diameter that is circumferentially surrounded by the inside diameter of the outlet opening at the end of the latter. The separated liquid is thus carried particularly quickly and completely away through the outlet opening, without the adjacent jacket tube being excessively wetted by the liquid components.
For ease in replacing the separating cartridge the outlet opening can be made integral with a cover fastened sealingly on the jacket tube by a snap closure or bayonet lock, for example. In this case the end of the truncoconical separating cartridge can serve for centering the cover. This configuration assures easy accessibility of the separating cartridge and its simple replacement in a minimum of time.
The liquid separator ca

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for separating liquid from gases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for separating liquid from gases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for separating liquid from gases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2614059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.