Apparatus for selectively receiving carrier wave signals

Pulse or digital communications – Receivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06215829

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for selectively receiving carrier wave signals, and more particularly, is directed to an improvement in a carrier wave signal receiving apparatus for selectively receiving frequency-modulated (FM) carrier wave signals, such as FM radio broadcasting signals, and obtaining a demodulated output signal based on the FM carrier wave signal received thereby.
2. Description of the Prior Art
In the field of super heterodyne receivers used for receiving FM carrier wave signals, such as FM radio broadcasting signals, there has been generalized employ a digital tuning system wherein, for example, a phase-locked loop (PLL) is utilized in place of an analog tuning system wherein a variable capacitor is used. In the super heterodyne receiver in which the digital tuning system is employed, the phase-locked loop is operative to set exactly various receiving frequencies, for example, under the control by a microcomputer, and manual adjustments to the receiving frequency by a user are not necessary.
In the super heterodyne receiver employing the digital tuning system, an automatic scanning tuning operation is performed. Under a condition in which the automatic scanning tuning operation is carried out, a receiving frequency provided for receiving selectively FM carrier wave signals is successively changed at predetermined regular frequency intervals by the PLL. Then, when there is an FM carrier wave signal which tunes with the receiving frequency, the change in the receiving frequency is temporarily ceased to keep the FM carrier wave signal tuning therewith, so that each FM carrier wave signal is searched. During the automatic scanning tuning operation in which such a signal search as mentioned above is carried out, it is desired to avoid such a situation that an image frequency signal which is not any FM carrier wave signal intended to be received acts as an FM carrier wave signal so that a malfunction by which the change in the receiving frequency is temporarily ceased is caused.
Accordingly, it has been proposed to cause an intermediate frequency signal which is obtained by frequency-converting the FM carrier wave signal to have a relatively high carrier frequency, for example, 10.7 MHz so that the image frequency signal is not located in a frequency range wherein the FM carrier wave signals expected to be selectively received exist and therefore cannot be detected in the automatic scanning tuning operation.
In addition, it is also proposed recently to form an intermediate frequency circuit portion of the super heterodyne receiver used for receiving the FM carrier wave signals, which includes an intermediate frequency filter for causing the intermediate frequency signal to pass therethrough, into an integrated circuit (IC) on the basis of the development in integrating technology related to electronic circuits. That is, in the super heterodyne receiver used for receiving the FM carrier wave signals, the intermediate frequency circuit portion is constituted by means of using one or more IC chips.
In such a case, the intermediate frequency filter contained in the IC chip is formed with resistive elements and capacitive elements which are materialized in the IC chip and therefore a passing frequency band of the intermediate frequency filter must be arranged to be located in relatively low frequency range. Therefore, in the intermediate frequency circuit portion including the intermediate frequency filter and comprising one or more IC chips, the intermediate frequency set therein is selected to be relatively low, for example, 150 kHz.
In the case where the intermediate frequency is selected to be relatively low, such as 150 kHz, in the super heterodyne receiver used for receiving the FM carrier wave signals as described above, the image frequency signal is undesirably located in the frequency range wherein the FM carrier wave signals expected to be selectively received exist. Consequently, it is feared that when a selected FM carrier wave signal is desired to tune with the receiving frequency successively changed by the PLL in the automatic scanning tuning operation, such a malfunction that an image frequency signal which results from another FM carrier wave signal adjacent to the selected FM carrier wave signal acts as the selected FM carrier wave signal to tune undesirably with the receiving frequency is brought about.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an apparatus for selectively receiving carrier wave signals, by which FM carrier wave signals expected to be received are selectively received in accordance with a super heterodyne system and a demodulation output signal is obtained based on the received FM carrier wave signal, and which avoids the aforementioned disadvantages encountered with the prior art.
Another object of the present invention is to provide an apparatus for selectively receiving carrier wave signals, by which FM carrier wave signals expected to be received are selectively received in accordance with a super heterodyne system and a demodulation output signal is obtained based on the received FM carrier wave signal, and which can avoid interferences brought about by image frequency signals in an automatic scanning tuning operation. This is accomplished with the use of a receiving frequency successively changed under a situation wherein an intermediate frequency which is a carrier frequency of an intermediate frequency signal obtained by frequency-converting the received FM carrier wave signal is selected to be relatively low.
A further object of the present invention is to provide an apparatus for selectively receiving carrier wave signals, by which FM carrier wave signals expected to be received are selectively received in accordance with a super heterodyne system and a demodulation output signal is obtained based on the received FM carrier wave signal, and which can avoid interferences brought about by image frequency signals in an automatic scanning tuning operation. The apparatus uses a receiving frequency successively changed under a situation wherein an intermediate frequency circuit portion of the apparatus, which includes an intermediate frequency filter for causing an intermediate frequency signal obtained by frequency-converting the received FM carrier wave signal to pass therethrough, with said filter formed on an IC operating with a relatively low carrier frequency of the intermediate frequency signal.
According to the present invention, there is provided an apparatus for receiving carrier wave signals, which comprises a frequency converting portion for frequency-converting an input signal so as to convert a carrier frequency of the input signal into a predetermined intermediate frequency with a local oscillation signal having its frequency determining variably a receiving frequency and to produce an intermediate frequency signal having its carrier frequency of the intermediate frequency, an intermediate frequency amplifying portion for amplifying the intermediate frequency signal, a frequency demodulating portion for frequency-demodulating the intermediate frequency signal obtained from the intermediate frequency amplifying portion with a demodulation characteristic having a center frequency substantially equal to the intermediate frequency. In addition, a direct current (DC) level detecting portion is used to produce a first level detection output signal which has a predetermined level when a DC level of a demodulation output signal obtained from the frequency demodulating portion is equal to or more than a predetermined level. An intermediate frequency level detecting portion produces a second level detection output signal which has a predetermined level when a frequency component of the intermediate frequency signal obtained from the intermediate frequency amplifying portion is within a predetermined frequency range including the center frequency of the demodulation characteristic in the frequency

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for selectively receiving carrier wave signals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for selectively receiving carrier wave signals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for selectively receiving carrier wave signals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2513158

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.