Apparatus for retarding the increase in braking torque...

Prime-mover dynamo plants – Electric control – Engine control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C290S04000F, C322S007000, C322S008000

Reexamination Certificate

active

06274942

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to drive systems, and, more particularly, to an apparatus for retarding the increase in braking torque associated with connecting an electrical consumer to a power supply of a drive system in a vehicle.
BACKGROUND OF THE INVENTION
In addition to actually propelling an associated vehicle, the drive engines of conventional vehicles also serve to drive additional units and to generate electric power by means of a generator connected to the drive engine. Electric power is required to supply a variety of consumers, some of which have relatively high power uptake requirements. Exemplary consumers of this type include heaters, (e.g., window, passenger compartment, seat, and catalyst heaters), air conditioning compressors, and high-powered drives (e.g., electrically operated steering systems and electrically operated brakes). When the drive engine is not being used to propel the vehicle, it runs in an idling state. In the idling state, the drive engine need only perform the work required to drive its own rotation, the work required to drive any mechanical auxiliary units, and the work required to drive the generator. To keep fuel consumption, pollutant emissions and noise development low, the idling speed is generally chosen as low as possible and, in fact, is set just above a minimum speed. In order to ensure the engine does not run haltingly or even stop, this minimum speed should not be fallen short of, even for a brief time. In the idling state, the internal combustion engine has only a very limited power reserve.
In conventional systems, switching on an electrical consumer of high power leads to a sudden voltage drop in the electrical system (or another system via which the consumer is supplied). This voltage drop leads to a sudden rise in exciter current in the generator control to constant voltage, which is accompanied by a likewise sudden increase in the braking torque exerted by the generator on the internal combustion engine. Such an increase in braking torque causes a drop in the idling speed of the internal combustion engine.
Conventional idling speed control systems seek to counteract such drops by performing a so-called filling intervention and/or an ignition intervention (see, for example, Automotive Handbook/Bosch, 21st edition, 1991, p. 466). In a typical filling intervention, a drop in the idling speed is counteracted by injecting an increased amount of fuel into the engine. The internal combustion engine responds to the fuel increase by producing an increased drive torque. Unfortunately, a relatively long period of time typically elapses before the increased torque produced by the filling intervention is made available. Control is, therefore, sluggish in the filling intervention context.
In a conventional ignition intervention, a drop in the idling speed of the internal combustion engine is counteracted by adjusting the ignition point from “late” to “early” in the ignition cycle. Shifting the ignition point in this manner causes an increase in the drive torque produced by the engine. Ignition intervention is much faster than filling intervention (i.e., it has a much shorter response time). However, ignition intervention is disadvantageous in that the internal combustion engines employing ignition intervention must be generally operated with a late ignition point in the idling state in order to ensure there is sufficient latitude for ignition point adjustment to occur in the “early” direction during a drop in the idling speed.
Although both intervention solutions mentioned above function in principle, they are not considered optimal. In particular, because of the relatively sluggish response of filling intervention, to avoid a temporary drop below the minimum idling speed, the idling speed of internal combustion engines employing that technique must generally be placed a relatively large distance above the minimum speed. On the other hand, in engines employing ignition intervention, the internal combustion engine runs with reduced efficiency because, as mentioned above, the ignition point must be set late in the ignition cycle. Both of the conventional intervention solutions, therefore, cause increased fuel consumption and pollutant emissions in comparison with constant idle conditions.
SUMMARY OF THE INVENTION
In accordance with an aspect of the invention, an apparatus is provided for use with a vehicle having a drive engine and at least two consumers of electrical power. The apparatus operates to retard an increase in braking torque associated with connecting the at least two consumers to a source of electrical power. The apparatus includes at least one generator operatively connected to the drive engine for developing a supply current. The at least one generator applies a braking torque to the drive engine. The braking torque is dependent upon the supply current. The apparatus also includes a control system operatively coupled to the at least two consumers. The control system is responsive to a control signal requesting activation of the at least two consumers to connect the at least two consumers to the supply current developed by the at least one generator in succession to thereby ensure the braking torque applied to the drive engine by the at least one generator increases over a predefined time period rather than instantaneously when the at least two consumers are activated.
In accordance with another aspect of the invention, an apparatus is provided for use with a vehicle having a drive engine, a first consumer of electrical power, and an energy storage device. The apparatus retards an increase in braking torque associated with connecting the consumer to a source of electrical power. The apparatus includes at least one generator operatively connected to the drive engine for developing a supply current. The at least one generator applies a braking torque to the drive engine. The braking torque is dependent upon the supply current. The apparatus also includes a control system which is responsive to a control signal received at a first time and requesting activation of the consumer to connect the consumer to the supply current developed by the at least one generator after a delay period to thereby enable the at least one generator to increase both the supply current and the braking torque applied to the drive engine over the delay period rather than abruptly. The control system is adapted to supply at least a portion of the increased current supply developed in the delay period to the energy storage device.
In accordance with still another aspect of the invention, a method is provided for retarding an increase in braking torque associated with connecting at least two consumers to a source of electrical power. The method comprises the steps of: developing a supply current with at least one generator operatively coupled to the drive engine; and receiving a control signal requesting activation of the at least two consumers. It also comprises the step of ensuring that a braking torque applied to the drive engine by the at least one generator increases over a predefined time period rather than instantaneously when the at least two consumers are activated by: (a) connecting a first one of the at least two consumers to the supply current developed by the at least one generator at a first time; and (b) connecting a second one of the at least two consumers to the supply current developed by the at least one generator at a second time after the first time.
In accordance with yet another aspect of the invention, a method is provided for retarding an increase in braking torque associated with connecting a consumer to a source of electrical power. The method comprises the steps of: developing a supply current with at least one generator operatively coupled to the drive engine; receiving a control signal at a first time requesting activation of the consumer; and controlling the at least one generator to increase both the supply current and the braking torque applied to the drive engine over a delay period rather than abru

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for retarding the increase in braking torque... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for retarding the increase in braking torque..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for retarding the increase in braking torque... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.