Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
1999-02-03
2003-02-04
Nguyen, Thinh (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
Reexamination Certificate
active
06513902
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for restoring an ink jet recording head for use in an ink jet printer in which ink is ejected to a recording sheet from an ejecting nozzle to perform recording and an ink jet printer provided with the apparatus. More specifically, the present invention relates to a preferable apparatus for restoring an ink jet recording head for restoring the condition of ink non-ejection which is caused by the adhesion of foreign particles to the nozzle face or the occurrence of air bubbles in an ejecting nozzle, and an ink jet printer provided with the apparatus.
2. Description of the Related Art
In general, an ink jet printer is used as an output device of a computer, a word processor, or the like.
In a conventional ink jet printer, a carriage shaft is disposed in a direction parallel with a flat platen, and a reciprocatable carriage is disposed along the carriage shaft. Moreover, an ink jet recording head is mounted on the carriage to oppose to the platen in such a manner that a head nozzle of the ink jet head faces a printing face of the platen.
According to the above conventional ink jet printer, a recording sheet is conveyed between the platen and the ink jet head. While the carriage having the ink jet head mounted thereon moves along the platen, the nozzle of the ink jet head is operated on the basis of a predetermined printing signal, so that the desired ink is ejected or discharged from the nozzle toward the recording sheet on the platen. Thus, a desired image is recorded or printed on the recording sheet.
When such ink jet printer is used to perform recording, there is a case in which foreign particles adhere onto a nozzle face or air bubbles are mixed into or generated in the ink passage of the ejecting nozzle of the ink jet recording head. The sticking foreign particles or air bubbles clog or narrow a nozzle port of the ejecting nozzle, which causes ink non-ejection.
To solve the ink non-ejection problem, in the conventional ink jet printer, the foreign particles or bubbles are removed from the ejecting nozzle by a restoring apparatus. A suction method and a pressurizing method are known as restoring methods. In the suction method, an ink jet recording head is moved to a home position of a carriage, a cap is attached to and covers an ejecting nozzle, and suction is performed to make negative a pressure in the cap, so that the foreign particles are sucked together with ink from the ejecting nozzle to restore the non-ejectable condition. In the pressurizing method, the foreign particles are ejected or discharged together with the ink from the ejecting nozzle by pressurizing the ink in an ink tank, to restore the non-ejectable condition of the ink jet head.
In the suction method, in order to suck the ink by the cap, the ejecting nozzle needs to be hermetically sealed by contacting the cap closely to the ejecting nozzle, but it is difficult to keep hermetic the inside of the cap. Moreover, in the conventional pressurizing method, it is difficult to keep constant an ink ejecting pressure of each ejecting nozzle for restoration, and a dispersion of the ink ejecting pressure often happens. If an excessive inner pressure acts inside the normal ejecting nozzle, unnecessary and undesired air bubbles may be generated in the normal ink jet recording head.
SUMMARY OF THE INVENTION
The present invention has been accomplished in consideration of the aforementioned circumstances, and a first object of the present invention is to provide an apparatus for restoring an ink jet recording head which can securely recover the ink jet recording head from the ink non-ejection condition caused by foreign particles or air bubbles adhering inside an ink passage and which can prevent unnecessary air bubbles from generating inside the ink passage of the ink jet recording head. A second object is to provide an ink jet printer provided with the apparatus.
According to the present invention, the first object can be attained by adjusting to a set pressure value an inner pressure of an ink supply passage increased by operating pressurizing means. Specifically, the object is attained by the provision of an apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:
non-ejection detecting means for detecting the occurrence of non-ejection of the ink drops from the ejecting nozzle to output a non-ejection signal;
pressurizing means for increasing an inner pressure of an ink supply passage connected to said ink jet recording head;
pressure measuring means for detecting the inner pressure of said ink supply passage; and
control means for controlling said pressurizing means based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring means reaches a set pressure value to eject ink.
Here, a piezoelectric ink jet system can be applied to the ink jet head. In the system, a piezoelectric element is provided to contact the ink supply passage. By applying a drive voltage, the piezoelectric element is deformed to increase the inner pressure of the ink supply passage, and ink within the ink supply passage is ejected from the nozzle. The non-ejection detecting means can use the piezoelectric element for use in the piezoelectric ink jet system. Specifically, when the piezoelectric element is deformed by a change of the inner pressure of the ink supply passage, voltage is generated between its both ends (piezoelectric effect). Therefore, an ejection
on-ejection condition can be determined by monitoring the voltage generated by the piezoelectric effect. Here, immediately after the ink is normally ejected, the inner pressure of the ink supply passage is largely varied by movement of the ink. When no ink is ejected, however, no ink moves in the ink supply passage, and the variation of the inner pressure is reduced. When the voltage generated by the piezoelectric effect of the piezoelectric element is largely varied, it can be determined that ejection is normally performed. When the variation is reduced, non-ejection can be determined.
For the control means, when the non-ejection detecting means detects the ink non-ejection to output the non-ejection signal, the inner pressure of the ink supply passage is increased to a preset pressure value, and the piezoelectric element is then actuated, so that the ink is ejected from the ejecting nozzle. The foreign particles or air bubbles can thus securely be removed from the ink supply passage. In this case, when the drive voltage of the piezoelectric element is set to a voltage higher than the drive voltage at the time of normal operation, e.g., about twice the normal drive voltage, the ink ejecting pressure is further raised, and the foreign particles or air bubbles can be removed more securely.
In the restoring operation, it can simultaneously be judged whether or not the amount of ink remaining in the ink supply passage is lacking; i.e., whether or not there is remaining ink. In general, a pressure decreasing rate in a stationary state of the ink supply passage after once pressurized is relatively small, when a sufficient amount of ink remains in the ink supply passage. In contrast, the pressure decreasing rate is relatively large, when a lesser amount of the ink remains in the ink supply passage. The presence of remaining ink is determined by using the pressure decreasing rate which is changed by the remaining amount of ink. More specifically, in the restoring operation, after the ink supply passage is pressurized up to the predetermined pressure value, the piezoelectric element is actuated for a short time to discharge the foreign particles or bubbles. Additionally, during and after the operation of the piezoelectric element, the pressure decreasing rate is monitored. When the pressure decreasing rate is more than a predetermined rate, or when the pressure in the ink supply passage d
Amano Toshiaki
Hakkaku Kunio
Sugawara Tatsuo
Fuji Photo Film Co. , Ltd.
Nguyen Thinh
Sughrue & Mion, PLLC
LandOfFree
Apparatus for restoring ink jet recording head does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for restoring ink jet recording head, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for restoring ink jet recording head will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3157156